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DISSERTATION ABSTRACT 

 

David Joseph Miller 

 

Doctor of Philosophy 

 

Department of Physics 

 

June 2020 

 

Title: Shaping, Tuning, and Playing Nanodrums: Towards Scalable and High Quality 

Factor Graphene Nanoelectromechanical Systems. 

 

 

Nanomechanical systems (NEMS) are some of humankinds most exquisite sensors 

of mass and force and have enabled the transduction of physical phenomena down to the 

single quanta level. Despite incredible progress on the overall properties of mechanical 

resonators, development of large-scale arrays is only now beginning to be explored. Such 

arrays could be transformative in basic science, allowing for realization of topological 

metamaterials and studies of networks, and for applied devices, such as next-generation 

mass spectrometers and thermal imaging cameras. To make a NEMS array viable for these 

applications however, it must have several desirable properties. First, it’s must have a high 

mechanical quality factor (𝑄) combined with a low mass, for high sensitivity. This requires 

both a fundamental knowledge of the origin of mechanical dissipation and viable 

engineering methods to maximize the 𝑄 for a given mass. Secondary, it must have scalable 

control methods for tuning the frequency and exciting motion. No such devices that meet 

these requirements exist today and applications for NEMS arrays remain limited. 

Graphene NEMS have the potential to meet these needs, if some fundamental 

challenges can be addressed. Although graphene NEMS have low mass, they also have a 

relatively low 𝑄. Furthermore, engineering methods to modify the shape of graphene 
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NEMS are limited, making it difficult to tune and enhance their properties. Finally, like all 

other NEMS, tuning and control methods that scale to large arrays are sorely lacking.  

In this work, we will begin to address these needs in graphene NEMS through a 

compendium of studies. We will first use shape engineering to enhance the properties of 

graphene NEMS. Then, we will present a detailed study of the 𝑄 and demonstrate methods 

to enhance it. Finally, we will study actuation and control methods for graphene NEMS, 

including demonstration of an electo-optic method that is truly scalable. Together, these 

studies pave the way for future work on large-scale arrays of NEMS. 

This dissertation includes previously published and unpublished co-authored 

material.  
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CHAPTER I 

INTRODUCTION 

1.1 Historical Perspective 

Mechanical systems have existed at the cutting edge of science and technology for 

millennia. The ancient Greek Antikythera mechanism(1), dating to the 2nd century BC,  

is considered to be the first analog computer  and used a complex mechanism of 

bronze gears to predict astronomical phenomena and is considered one of the 

technological wonder of the ancient world. Mechanical clocks improved the accuracy 

of timekeeping from 15 minutes to 15 seconds, an improvement by almost two-

orders of magnitude, ushering in the era of precision timekeeping. More recently, a 

wide assortment of mechanical computing devices emerged near the turn of the 20th 

 
Figure 1.1: Mechanical systems throughout history. a. Bronze gear fragment recovered from the 

ancient Greek Antikythera mechanism. Anatomy of the knee in humans 

(https://en.wikipedia.org/wiki/Clarke%27s_test#/media/File:Blausen_0597_KneeAnatomy_Side.pn

g) by Blausen.com staff, December 3, 2013. Creative Commons BY 2.5 license.  

 b. Diagram of a pendulum clock. c. Partially completed piece of Charles Babbages’ analytical engine. 

https://en.wikipedia.org/wiki/Clarke%27s_test#/media/File:Blausen_0597_KneeAnatomy_Side.png
https://en.wikipedia.org/wiki/Clarke%27s_test#/media/File:Blausen_0597_KneeAnatomy_Side.png
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century including Charles Babbage’s analytical engine, considered to be the first 

design of a -purpose computer(2). On the scientific side, Einstein and de Haas(3) used 

a suspended slug of ferromagnetic material driven at its mechanical resonance 

frequency to confirm Ampère’s hypothesis that magnetism arises from circulating 

charge. 

 

Like the pendulum clock and the Einstein de Haas experiment, a large subset of 

mechanical systems are based on mechanical resonance. In the simplified description 

of mechanical resonator, a freely suspended element with mass 𝑚 and spring 

constant 𝑘 has a natural frequency 𝜔0 ≈ √
𝑘

𝑚
. The dissipation of the system is given 

by the parameter 𝛽, which is the exponential time-constant giving the damping rate 

of an undriven oscillator. A key figure of merit is the quality factor, defined as a ratio 

of the stored energy (𝑊) to the energy lost (𝛥𝑊) for every oscillation cycle, 𝑄 =
𝑊

𝛥𝑊
≈

𝜔0

2𝛽
. Across nearly all mechanical resonators, with dimensions ranging from the 

nanoscale (𝑉𝑜𝑙𝑢𝑚𝑒~10−26 m3) to the macroscale(4) (𝑉𝑜𝑙𝑢𝑚𝑒~10 m3), the goal is to 

measure a perturbation on the dynamics of the oscillator before it decoheres. This 

perturbation could be an added mass(5) (the basis for nanomechanical mass 

spectrometry) a force gradient (leading to various types of atomic force microscopy 

such as electric force microscopy(6)), or coupling to external or internal degrees of 

freedom(7) (such as a neighboring resonator). The indiscriminate response of the 

mechanical resonator to these perturbations is best illustrated in their use to detect 

fundamental physics in vastly different domains. For example mechanical resonators 

have been used both in experiments measuring quantum fluctuations(8) and 

gravitational waves from astronomical* sources(4). Some recent theoretical 

proposals have even suggested that entangled mechanical resonators held in a 

 
*Despite his claims, Jospeh Weber’s attempts at resonant detection of gravitational waves were a failure. In 2017, 

LIGO successfully detected gravitation waves. Although the test mirrors in the LIGO interferometers are ultra-high 
quality factor mechanical resonators, the detection mechanism itself does not rely on mechanical resonance. 
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gravitational field could be used to study quantum gravity(9) and help answer some 

of the greatest unresolved question in our understanding of the universe. 

 

As a result of the silicon revolution and the associated planar device processing 

techniques, mechanical systems have been fabricated in increasingly diminutive 

sizes. These so-called microelectromechanical systems (MEMS) are extremely low 

mass and thus respond strongly to extremely small perturbations. Furthermore, due 

to their small size, they require low power to operate and are robust against large g-

forces. These properties have allowed MEMS to become ubiquitous in many 

applications that power modern technology. Some examples include airbag sensors, 

gyroscopes, and timing chips, among others(10). 

 

Figure 1.2: Diagram of the resonant gate transistor, an early MEMS device, taken from(11). 

 
Likewise, resonant MEMS have proven to be highly powerful instruments. The first 

example of these was the resonant gate transistor (RGT), invented in 1964 by a 

Harvey Nathanson and coworkers, where a cantilevered metallic beam acted as the 

gate electrode in a field-effect transistor(11) (See Figure 1.2). The cantilever was held 

at a bias voltage (𝑉𝐷𝐶) some distance (𝑑) over a microfabricated field effect transistor, 

with 𝑉𝐷𝐶 and 𝑑 determining the conductance in the channel. An input AC signal (𝑉𝐴𝐶) 

with frequency 𝜔 was coupled to the cantilever through a metallic electrode at the 
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tip. The AC voltage induced mechanical vibrations at frequency 𝜔, which are only 

large when 𝜔 is resonant with the cantilever’s mechanical resonance frequency (𝑓0). 

These vibrations modulated the gate voltage in the field-effect transistor and thus the 

output current. Varying 𝑉𝐷𝐶 allowed a small amount of tuning of 𝑓0 to control the 

center frequency of the passband. This system was proposed as an extremely 

sensitive (for the time) bandpass filter, with the width and location passband 

determined by the frequency and quality factor of the cantilever.   

 

With remarkable prescience, the inventors of the original inventors of the RGT 

identified two crucial problems that had to be overcome for broader adoption, which 

continue to plague microscopic mechanical resonators today: 

1. Control and enhancement of the mechanical quality factor: The 𝑄 

determined the width and selectivity of the passband in the RGT and 

increasing it would allow for highly selective filters. 

2. Control of 𝒇𝟎: Variability in 𝑓0 of the microfabricated beams limits the yield in 

arrays of RGTs. Although 𝑉𝐷𝐶 can be used to fine-tune 𝑓0. A separate voltage 

source is required for each beam, limiting scalability.  

 

The field of MEMS has advanced significantly since the demonstration of the RGT. This 

is perhaps best illustrated by the atomic force microscope(12) (AFM), which uses a 

tiny cantilever driven on resonance to create a topographic map of a surface. Modern 

AFMs are sensitive enough to image the double-helix structure of DNA(13) or even 

molecular structures(14). Advanced nanofabrication techniques have allowed the 

dimensions of MEMS to be pushed even deeper into the nanoscale. 

Nanoelectromechanical systems(15) (NEMS) represent a further evolution of MEMS 

and have had a wide-ranging scientific impact. Such tiny devices have enabled studies 

of macroscopic quantum mechanics(16), mass sensing(17), and ultra-high resolution 

magnetic imaging(18). On the extreme end of downsized mechanical resonators are 

low-dimensional materials, such as suspended carbon nanotubes(19) and graphene 

sheets(20). These “atomic-scale” devices represent the ultimate limit of how small a 

mechanical resonator can be made.  
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Much like their nanoelectronic counterparts, the power of NEMS rapidly grows as the 

number of devices is scaled up to large arrays(21). Such large device arrays are 

extremely interesting from both a fundamental and applied perspective. On the 

applied side, resonant sensing benefits greatly from large arrays. For example, in 

NEMS neutral-particle mass spectrometry(22) (NEMS-MS), neutral analytes are 

adsorbed by a NEMS device, which changes its frequency. This change in frequency 

can be correlated with the adsorbed mass, allowing for an exquisitely sensitive scale 

that can detect neutral particles, unlike traditional mass spectrometry. Although a 

single NEMS-based mass sensor is powerful(17), arrays have similarly excellent mass 

sensitivities but much larger cross-sectional areas, greatly increasing the throughput 

of NEMS-MS. 

 

Another sensing technique that could potentially be revolutionized with NEMS is 

thermal infrared imaging. In traditional thermal sensors, called microbolometers, 

thermal (i.e. 8-12 μm) light changes the resistance in a thermally isolated suspended 

structure(23). Sensitive measurement of this resistance change allows for an image 

to be formed by measuring the resistance change in all devices (which can be 

1024×1024 in modern microbolometer arrays). These traditional microbolometers 

have fundamental limitations when it comes to their bandwidth (~60 Hz) and 

temperature-of-operation (around room-temperature). A NEMS approach, similar to 

mass sensing, correlates incident radiation with a thermally induced change in the 

resonance frequency of a device(24). Such devices would be much more robust to 

extra heating and could operate at much faster speeds. 

 

On the more fundamental side, NEMS arrays are interesting for studies of non-linear 

physics and synchronized oscillators. Even a small NEMS arrays with local coupling 

have been shown to have highly exotic states(25). By scaling up such small coupled 

arrays, it could be possible to model highly-synchronized networks, such as those 

seen in complex biological systems like the brain(26). 
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For continued evolution of NEMS arrays, the same challenges previously identified by 

the inventers of the resonant gate transistor must be met. Mainly, we would like very 

high-𝑄 NEMS with a controllable frequency capability. The high-𝑄 increases the 

overall sensitivity of a device. It also increases the number of devices that can be 

multiplexed, for easier readout(27). A controllable frequency allows for the initial 

state of a device to be set and allows for tunable coupling between devices in a 

nanomechanical network. It is also highly important to be able to tune the frequency 

to offset for fabrication imperfections(28). Furthermore, it is highly desirable such 

devices have a low mass and a large surface-volume ratio, since these increase the 

capture cross section, the minimum pixel size, the thermal mass, and the degree of 

non-linear coupling(29) between neighboring resonators. Despite their promise, 

NEMS arrays are still in their infancy, and applications are limited. This is due to a 

lack of systems which simultaneously meet all the needs identified above. In this 

work, we will demonstrate progress towards achieving NEMS arrays using graphene 

NEMS, which we show could have the desirable combination of low-mass, high-𝑄, and 

programmable frequency. 

1.2 Modern NEMS and the Pursuit of Low Mass and High 𝑸 

As described above, high-𝑄 and low mass is desirable across a range of NEMS 

application and the simultaneous pursuit of low-mass and a high mechanical quality 

factor has driven the field of NEMS in recent years. Both of these quantities are 

important across a wide range of applications. A low mass reduces the inertia in the 

mechanical systems, increasing its sensitivity to small perturbations due to external 

forces(18, 30, 31) or masses(22, 27, 32, 33). Meanwhile, a high 𝑄 protects these 

perturbations from decoherence, making them easier to detect. This is reflected in 

the expressions for the minimum detectable mass of a mechanical resonator, 

𝛿𝑚𝑚𝑖𝑛 ∝
𝑚

𝑄
, and the thermal-noise limited minimum detectable force, 𝑑𝐹𝑚𝑖𝑛 =

√8𝜋𝑘𝑏𝑇𝑚𝑒𝑓𝑓𝑓0/𝑄, which both require high 𝑄 and low mass to reach the highest 

sensitivity(14). Furthermore, both these quantities are of crucial importance as 

mechanical systems are increasingly studied in the realm of quantum mechanics. 
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For example, the zero-point motion of an oscillator(34) is given by 𝑧𝑧𝑝𝑚 =

√ℏ𝑄/(2𝜋2𝑚𝑓0
2) while the number of coherent oscillations(35) is 𝑁 = 𝑄𝑓0ℏ/𝑘𝐵𝑇.  

 

 

 

A major limitation in these goals is a heuristic volumetric dependence of 𝑄~𝑉1/3 (or 

𝑄~𝑚1/3) (shown in Figure 1.3) that has been observed over a wide range of length 

scales and materials(36). As such, the highest mechanical quality factors have 

typically been achieved in large, macroscopic mechanical resonators, which have 

extremely large masses. A significant exception to this trend comes in the form of 

high-tension silicon-nitride (SiN) strings and membranes. First demonstrated in 

2006(37), high-tension SiN strings can have 𝑄’s of a few-hundred thousand, several 

orders-of-magnitude higher than other similarly sized NEMS devices.  

 

Since this initial work, the theory of dissipation dilution(38, 39) (DDT) has emerged 

to describe the origin of the high 𝑄 in SiN NEMS. In essence, DDT notices that although 

the vast majority of elastic energy is stored in the conservative elongational potential 

energy, loss arises from the non-conservative potential energy stored in bending. This 

 
Figure 1.3: Quality factor vs. device volume, taken from(36) 
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means that increasing the elongational energy, through either stress or large sizes, or 

reducing the bending energy via reduced thickness, can lead to exceptionally high 𝑄. 

To date, the highest recording quality factors in NEMS of 𝑄~108 − 109 have occurred 

in heavily engineered SiN devices(34, 35, 40, 41), making these the most promising 

candidates for high-resolution sensing(30) and studies of quantum 

nanomechanics(42). Still, these devices are much larger (mm-scale) and heavier than 

atomic-scale NEMS, making them infeasible for arrays. 

 

In stark contrast are low-dimensional materials, such as 1D carbon nanotubes(19) 

and 2D graphene sheets(20). Such devices have femtogram masses typically have 

lateral dimensions <10 μm. However, these devices have extremely low quality 

factors of 101 − 102 compared to other 𝑄 > 103 for other NEMS devices(36) and 𝑄 >

109 for SiN NEMS, which greatly limits the promise of low-dimensional NEMS. Still, 

graphene has many desirable properties making it worthwhile to study and 

exceptionally exciting if the 𝑄 can be improved. For example, 2D NEMS have area 

mass densities 100 times lower than SiN, increasing the ultimate sensitivity in mass 

and force sensing. Furthermore, graphene is an excellent electrical conductor(43), 

making NEMS feasible without extra metallization, as is the case with SiN NEMS(44).  

1.3 Graphene NEMS 

Graphene, a two-dimensional layer of carbon atoms, has energized the field of physics 

since its isolation in 2004(43). This is due to a unique set of high electrical and 

thermal conductivity(43, 45–47), high mechanical strength(48, 49), relatively high 

and broadband optical absorption(50), in addition to many others. This combination 

of properties has made graphene desirable as the motional element in NEMS. The first 

realization of  a graphene NEMS occurred in 2007 when Bunch and coworkers(51) 

exfoliated graphene sheets over trenches etched into SiO2 (See Figure 1.4). The 

devices were actuated with both optical and electronic methods and transduced using 

optical interferometry. These graphene NEMS had resonance frequencies in the tens 

of MHz and importantly, the resonance frequency could be tuned by several-hundred 

percent, significantly more than in other NEMS materials(52).  
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Following the demonstration of chemical vapor deposition (CVD) growth of graphene 

on copper foil(53), Van der Zande and co-workers demonstrated large-scale arrays of 

CVD graphene NEMS(54), including square drumheads and lithographically defined 

beams. These devices showed remarkably higher quality factors at 10 K, 102 times 

higher than the room-temperature values of the 𝑄. Since these initial studies, the 

graphene NEMS community has sub-divided into groups primarily focused on 

studying fundamental nanoscale physics at low temperatures and those studying the 

applications and properties of room-temperature graphene NEMS.   

 

The pursuit of graphene NEMS at low temperatures has been lucrative. Cooling to the 

millikelvin regime allows for coupling to superconducting cavities for 

transduction(55, 56), allowing for ultra-sensitive readout. Furthermore, graphene 

NEMS can have quality factors exceeding 106 at cryogenic temperatures of ~10 

mK(57), allowing for studies of non-linear dissipation mechanisms(57, 58). Despite 

these advances, several open questions and challenges remain, including what drives 

the high-quality factor at cryogenic temperature in graphene NEMS.  

 

Room-temperature studies of graphene NEMS on the other hand have been primarily 

concerned with elucidating the properties of the ultra-thin sheets and readying them 

for technological applications(46, 59–61). For many of these applications, a high-𝑄 is 

highly desirable since is increases the sensitivity. For the remainder of this thesis, we 

 
Figure 1.4: Early graphene NEMS. a) Diagram of electrically connected graphene NEMS suspended over 

a trench. (b) SEM image of a graphene flake suspended over a cavity etched into SiO2. Both images are 

taken from(20). 
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will be concerned with the properties of room-temperature CVD graphene NEMS, 

which differ considerably from their low-temperature counterparts. 

 

One key advantage that graphene NEMS have over other materials is potentially 

efficient control methods. The resonance frequency of graphene NEMS can be readily 

controlled using electrostatic gating(62) or heating(63). Furthermore, recent studies 

in supported graphene have shown the charge-neutrality point can be tuned using 

photoinduced doping(64). This method could allow for controlling the resonance 

frequency, similar to an electrostatic gate voltage, but would be reversable. However, 

studies of this effect are lacking. 

1.3.1 Quality Factor in Room-Temperature Graphene NEMS 

As discussed earlier, the 𝑄 plays a critical role in determining the efficacy of a 

nanomechanical system, both for single device and array applications. Early results 

showed that graphene NEMS have quality factors(20) of 𝑄~101 − 102. This is in 

contrast to similarly-sized SiN beams(65) that have 𝑄~104. Barton et. al.(66) showed 

that the 𝑄 in monolayer CVD graphene drumheads obeyed a size-dependence, with 

𝑄 ∝ 𝑎, with 𝑄~2400 for 𝑎 = 11.25 μm (See Figure 1.5). Furthermore, they showed 

that the 𝑄 of higher-order modes slightly decreased, similar to silicon-nitride 

devices(44). However, they were unable to ascertain the origin of the damping 

mechanisms, or why the 𝑄 is so much lower than in other nanomechanical systems. 

 

 
Figure 1.5: Quality factor in graphene NEMS. a) Size-dependent quality factor in monolayer CVD 

graphene. Taken from(66) b) SEM image and resonance curve of graphene ‘H’ beam with 𝑄~103. 

Image taken from(67) 
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Since this early work, some efforts have been made to increase the 𝑄 in graphene 

NEMS. Oshidari et. al.(68) showed than by straining a few-layer, ~10 μm long 

graphene beam, the resonance frequency could be increased by a factor of 3 with the 

𝑄 increasing from ~300 to ~7700, which they attributed to the additional tension. 

Kumar and Bhaskaran(67) demonstrated ~2 μm long graphene ‘H’ beams fabricated 

with electron-beam lithography and reactive ion etching that had 𝑄~1500. The origin 

of the low 𝑄 in graphene NEMS is still not well understood, although there are hints 

it obeys the same general trends as SiN NEMS(65), and no significant effort has been 

devoted to improve it. The time is ripe for a unifying theory to guide effort to increase 

the 𝑄 in graphene NEMS 

1.4 Outline of Thesis 

As discussed above, graphene NEMS offer a suite of exciting properties but have been 

limited by low quality factors and relatively little study of control methods which 

might be useful for NEMS arrays. This thesis will present a compendium of studies 

beginning to overcome these challenges, laying the groundwork for applications of 

graphene NEMS arrays. In essence, we wish to answer the same fundamental 

challenges laid out by the inventors of the RGT; increase the 𝑄 and control 𝑓0. 

 

Chapter II is devoted to the general theoretical framework used in this work. 

 

Chapter III will describe the general experimental methods used in this work. Both 

the fabrication process, optical measurement methods, and electronic actuation 

methods will be discussed. 

 

Chapter IV is based on work co-authored with Benjamín Alemán(69). In this work, we 

demonstrate the use of focused ion beam milling to craft graphene NEMS with various 

non-standard geometries, including triangular cantilevers and crosses, and measure 

their properties. We find that the quality factor can be improved by a factor of 20. 

These devices also display greatly increased force-sensitivity due to the combination 

of increased 𝑄 and reduced mass. This approach opens up a unique, currently 
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inaccessible regime in graphene nanomechanics, one characterized by low strain, low 

frequency, small mass, and high Q, and facilitates tailoring of non-linearity and 

damping in mechanical structures composed of graphene. 

 

Chapter V is based on work co-authored with Andrew Blaikie, Brittany Carter, and 

Benjamín Alemán(70). Here, we show that Focused Ion Beam (FIB) milling is a high-

yield means to engineer the shape of graphene NEMS, which in turn modifies their 

mode shape. We describe the specialized cutting methods necessary to achieve 

complex geometries such as beams, tapered beams, and trampolines. We transduce 

the mode shapes using optical interferometry and show that they are consistent with 

membrane theory. This work is an enabling step for future work which relies on well-

defined mode shapes, such as mass spectrometry. 

Chapter VI is based on currently unpublished work co-authored with Andrew Blaikie, 

Brittany Carter, Jayson Paulose, and Benjamín Alemán. Here, we perform a large-scale 

study of the quality factor in suspended graphene drumheads. We find that the quality 

factor in these graphene drumheads agrees with the predictions of a corrugation 

corrected theory of dissipation dilution when size, stress, and mode number are 

varied. Furthermore, we use Ga+ irradiation to increase the stress and reduce 

wrinkles in suspended graphene, improving the quality factor by a factor of 20. 

Moreover, this corrugation corrected theory of dissipation dilution predicts if 

dominant bending losses could be suppressed, quality factors above one million at 

room temperature could be acheived.  

Chapter VII is based on work co-authored with Benjamín Alemán(71). In this work, 

we combine scanning optical interferometry and spatially-resolved optical actuation 

to determine how spatially localized the opto-thermal drive force is in graphene 

NEMS. We use a force density model to infer that the drive force is spatially localized 

to about the size of the laser spot, allowing us to selectively excite and suppress 

degenerate modes. These results offer a powerful approach to image and actuate any 

arbitrary high-order mode of a 2D NEMS.  
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Chapter VIII is based on work co-authored with Andrew Blaikie, and Benjamín 

Alemán(72). In this work, we demonstrate an electro-optic tuning method for 

graphene NEMS that has a persistence time of several days and can repeatedly write 

and erase the state of a single device with a high degree of precision. We show the 

scalability of this technique by aligning the frequencies of several devices and discuss 

potential implications of this tuning method for both single devices and as a means to 

program graphene NEMS arrays. 

Chapter IX contains the overall conclusions from this thesis and will discuss the future 

work this thesis enables. 
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CHAPTER II 

THEORETICAL BACKGROUND 

2.1 From a Continuous Body to a Harmonic Oscillator 

To study the behavior of mechanical oscillators, it is useful to first reduce their motion 

to that of a damped harmonic oscillator, which gives us the tools to understand their 

quality factors, mode shapes, and resonance frequencies. The Euler-Bernoulli beam 

equation describes the dynamic motion of mechanical systems across vastly different 

length scales, ranging from bridges to nanoscopic mechanical resonators(14), 

however, it is not written in a form that resembles the damped harmonic oscillator. 

For the two-dimensional mechanical structures considered in this work, the driven, 

damped two-dimensional Euler-Bernoulli beam equation is written as, 

𝜌
𝜕2𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑡2
+ 𝜅∇4𝑢(𝑥, 𝑦, 𝑡) + Γ

𝜕𝑢

𝜕𝑡
− 𝑇∇2𝑢(𝑥, 𝑦, 𝑡) = 𝐹𝑑(𝑥, 𝑦) (2. 1) 

where 𝜌 is the 2D mass density, 𝜅 = 𝐸𝐼 is the bending stiffness (𝐸 is the elastic 

modulus and 𝐼 is the moment of inertia), 𝑇 is the tension, 𝐹𝑑(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦) cos(𝜔𝑡) 

is a spatially-dependent driving force density, and Γ is the linear damping coefficient 

due to extrinsic sources of damping(36). 

 

If we assume that the all the vibrational motion is occurring in a single eigenmode of 

a circular plate, i.e. 𝑢(𝑥, 𝑦, 𝑡) → 𝑎𝑚𝑛(𝑡)𝜙𝑚𝑛(𝑟, 𝜃), we can recover the equation for a 

driven damped harmonic oscillator with a set of effective parameters(14) integrating 

over 𝜙𝑚𝑛(𝑟, 𝜃) and integrating by parts with the boundary conditions for a fully-

clamped circular plate, 𝜙𝑚𝑛(𝑟 = 𝑎) = ∇𝜙𝑚𝑛(𝑟 = 𝑎) =0. 

�̈�𝑚𝑛(𝑡) +
𝛤𝑒𝑓𝑓

𝑚𝑒𝑓𝑓
�̇�𝑚𝑛(𝑡) + (

𝑘𝑝,𝑒𝑓𝑓

𝑚𝑒𝑓𝑓
+

𝑘𝑚,𝑒𝑓𝑓

𝑚𝑒𝑓𝑓
) 𝑎𝑚𝑛(𝑡) = 𝐹𝑒𝑓𝑓 𝑐𝑜𝑠(𝜔𝑡) (2. 2) 

𝑚𝑒𝑓𝑓 = 𝜌𝑎2 ∫ 𝑑𝜃 ∫ 𝑠𝑑𝑠𝜙𝑚𝑛
2 (𝑠, 𝜃)

1

0

2𝜋

0

 (2. 3) 

𝛤𝑒𝑓𝑓 = 𝛤𝑎2 ∫ 𝑑𝜃 ∫ 𝑠𝑑𝑠𝜙𝑚𝑛
2 (𝑠, 𝜃)

1

0

2𝜋

0

(2. 4) 
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𝑘𝑝,𝑒𝑓𝑓 =
𝜅

𝑎2
∫ 𝑑𝜃 ∫ 𝑠𝑑𝑠∇2𝜙𝑚𝑛(𝑠, 𝜃)𝛻2𝜙𝑚𝑛(𝑠, 𝜃)

1

0

2𝜋

0

(2. 5) 

𝑘𝑚,𝑒𝑓𝑓 = −𝑇 ∫ 𝑑𝜃 ∫ 𝑠𝑑𝑠∇2𝜙𝑚𝑛(𝑠, 𝜃)𝜙𝑚𝑛(𝑠, 𝜃)
1

0

2𝜋

0

(2. 6) 

𝐹𝑒𝑓𝑓 = 𝑎2 ∫ 𝑑𝜃 ∫ 𝑠𝑑𝑠𝑓(𝑟, 𝜃)𝜙𝑚𝑛(𝑠, 𝜃)
1

0

2𝜋

0

(2. 7) 

where  𝑘𝑝,𝑒𝑓𝑓 and 𝑘𝑚,𝑒𝑓𝑓 are taken to be the plate and membrane spring constants for 

the mode 𝜙𝑚𝑛 . The mode number is dropped on the effective parameters for brevity. 

We can re-write this in the form of the driven-damped harmonic oscillator, 

�̈�𝑚𝑛(𝑡) + 2𝛽�̇�𝑚𝑛(𝑡) + 𝜔0
2𝑎𝑛𝑚(𝑡) =

𝐹𝑒𝑓𝑓

𝑚𝑒𝑓𝑓
𝑐𝑜𝑠(𝜔𝑡) (2. 8) 

where 𝜔0
2 = (𝜔𝑝

2  + 𝜔𝑚
2 ) and 𝛽 =

𝛤𝑒𝑓𝑓

2𝑚𝑒𝑓𝑓
. We can solve this for the amplitude in the 

quasi steady-state in the complex regime by letting 𝑎(𝑡) → 𝑅𝑒{𝑧(𝑡)} and assuming the 

solution 𝑧𝑛𝑚(𝑡) = 𝑧𝑛𝑚(𝜔)𝑒𝑥𝑝(𝑖𝜔𝑡),  

−𝑧𝑛𝑚(𝜔)𝜔2 + 𝑧𝑛𝑚(𝜔)2𝛽𝑖𝜔 + 𝑧𝑛𝑚(𝜔)(𝜔𝑝 + 𝜔𝑚) = 𝐹𝑒𝑓𝑓 (2. 9) 

𝑧𝑛𝑚(𝜔) =
𝐹𝑒𝑓𝑓

(𝜔0
2 − 𝜔2) + 2𝑖𝛽𝜔

(2. 10) 

 
Taking the amplitude and complex phase, we arrive at the standard equations for the 

driven-damped harmonic oscillator,  

abs(𝑧𝑛𝑚) = 𝑅(ω) =
𝐹𝑒𝑓𝑓/𝑚𝑒𝑓𝑓

√(𝜔0
2 − ω2)2 + 4β2ω2

(2. 11) 

arg(znm) = 𝛩(𝜔) = tan−1 (
2𝛽𝜔

𝜔2 − 𝜔0
2) (2. 12) 

The true resonance frequency (i.e. the frequency where 𝑅(𝜔) is maximized) of the 

system is given by 𝜔𝑟 = 𝜔0√1 −
1

2
(

1

 𝑄
)

2

, where 𝑄 =
𝜔0

2𝛽
. For the devices studied in this 

work, 
1

2
(

1

𝑄
)

2

< 10−3 so 𝜔𝑟 ≈ 𝜔0. As such, the resonance frequency will refer to 𝜔0 or 

𝑓0 = 𝜔0/2𝜋 rather than 𝜔𝑟 for the remainder of this thesis.  
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We now prove that 𝑄 as defined above is the mechanical quality factor, which is 

defined by the ratio of energy stored over an oscillation cycle at resonance to the 

dissipated energy, 𝑄 = 2𝜋
𝑊

Δ𝑊
. We can solve for this by looking at Eq. 2.8 in the 

undriven case with an initial displacement (i.e. 𝐹eff = 0). We solve this in the complex 

domain with trial solution of  𝑧mn = 𝑧0𝑒𝑥𝑝(𝑖𝑏𝑡), 

−𝑏2 +
𝑖𝑏𝜔0

𝑄
+ 𝜔0

2 = 0 (2. 13) 

𝑏 =

𝑖𝜔0

𝑄 ± √− (
𝜔0

𝑄 )
2

+ 4𝜔0
2 

2
(2. 14)

 

In the limit of high-𝑄, which is the case for the devices studied in this thesis, 4𝜔0
2 ≫

(
𝜔0

𝑄
)

2

, so 𝑏 =
𝑖𝜔0

2𝑄
± 𝜔0. The term under the square root is real as long as 𝑄 >

1

2
 

allowing us to write 𝑧𝑚𝑛 = 𝑧0exp (−
𝜔0

2𝑄
𝑡) cos(𝜔0𝑡). The energy of the resonator on 

resonance is thus 𝑊 =
1

2
𝑚𝑒𝑓𝑓𝜔0

2𝑧0
2. Meanwhile the energy lost over a cycle is Δ𝑊 =

1

2
𝑚𝑒𝑓𝑓𝜔0

2𝑧0
2 −

1

2
𝑚𝑒𝑓𝑓𝜔0

2 (𝑧0exp (
𝜋

𝑄
))

2

≈ 𝑚𝑒𝑓𝑓𝜔0
2𝑧0

2 𝜋

𝑄
. Thus 2𝜋

𝑊

𝛥𝑊
≈ 𝑄.  

We finally will note that in the high 𝑄 limit near the resonance 𝜔0, 𝜔 ≈ 𝜔0 and Eq. 

2.11 can be approximated by a Lorentzian lineshape (shown in Figure 2.1), 

 
Figure 2.1: Amplitude (left) and phase (right) for the amplitude response of a driven damped harmonic 

oscillator with a 𝑄 = 7. For comparison, the amplitude of a Lorentzian lineshape is shown in the 

dashed orange line  
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𝑧𝑛𝑚(𝜔) =
𝐹𝑒𝑓𝑓/2𝜔0

√(𝜔0 − 𝜔 )2 + (
𝜔0

2𝑄)
2

(2. 15)
 

 

2.2 Mode Shapes 

For many applications including mass sensing(32) and for understanding(39) the 𝑄, 

the precise shape of the mechanical modes is important. The set of eigenfunctions 

𝜙𝑚𝑛(𝑟, 𝜃) and resonance frequencies 𝜔𝑚𝑛 defining the mechanical mode shape can 

be found by solving the homogenous part of Eq. 2.1. with the boundary conditions 

defined above,  

1

𝑎𝑚𝑛(𝑡)
𝜌

𝜕2𝑎𝑚𝑛(𝑡)

𝜕𝑡2
+

1

𝜙𝑚𝑛(𝑟, 𝜃)
𝜅∇4𝜙𝑚𝑛(𝑟, 𝜃)

+
1

𝑎𝑚𝑛(𝑡)
Γ

𝜕𝑎𝑚𝑛

𝜕𝑡
−

1

𝜙𝑚𝑛(𝑟, 𝜃)
𝑇∇2𝜙𝑚𝑛(𝑟, 𝜃) = 0 (2. 16)

 

Separating variables and looking at the spatial and time equations, 

∇4𝜙𝑚𝑛(𝑠, 𝜃) −
𝑇𝑎2

𝜅
∇2𝜙𝑚𝑛(𝑠, 𝜃) −

𝜌

𝜅
𝜔𝑚𝑛

2 𝑎4𝜙(𝑠, 𝜃) = 0 (2. 17) 

where 𝑠 =
𝑟

𝑎
. We first look in the limit 𝑇𝑎2≫κ, which is applicable for most of this 

work. In this limit, Eq. 2.17 can be approximated as a membrane rather than a plate, 

with mode functions given by, 

𝜙𝑚𝑛(𝑠, 𝜃) = 𝑐𝑜𝑛𝑠𝑡.× 𝐽𝑚[𝛼𝑚𝑛𝑠] cos(𝑚𝜃) (2. 18) 

where 𝑚 ≥ 0, 𝑛 ≥ 1, and 𝛼𝑚𝑛 is the nth solution to the equation  𝐽𝑚(𝑠) = 0. The first 

few values of 𝛼𝑚𝑛 are 𝛼01 = 2.405, 𝛼11 = 3.832, 𝛼21 = 5.136, etc… The resonance 

frequencies of the circular membrane can be found by inserting Eq. 2.18. into Eq. 2.17. 

Doing this, we find a set of resonance frequencies for the mechanical modes, 

𝜔𝑚𝑛 =
𝛼𝑚𝑛

𝑎
√

𝑇

𝜌
(2. 19) 

The first several mode shapes for a circular membrane are shown in Figure 2.2. 
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Although the membrane solution is appropriate for most of this work, the study 

presented in Chapter VI requires a more detailed analysis of the exact solution of the 

mode shape. The full solution to Eq. 2.17 can be found as follows(73). Factoring the 

operator in Eq. 2.17 gives, 

(∇2 + 𝜂𝑚𝑛
2 )(∇2 − 𝜉𝑚𝑛

2 )𝜙𝑚𝑛 = 0 (2. 20) 

where,  

𝜂𝑚𝑛
2 =

𝑇𝑎2

2𝜅
((1 +

4𝜔𝑚𝑛
2 𝜌𝜅

𝑇𝑎2
) − 1) (2. 21) 

 𝜉𝑚𝑛
2 =

𝑇𝑎2

2𝜅
((1 +

4𝜔𝑚𝑛
2 𝜌𝜅

𝑇𝑎2
) + 1) (2. 22) 

and 

𝜉𝑚𝑛
2 − 𝜂𝑚𝑛

2 =
𝑇𝑎2

𝜅
≡

1

𝜆2
(2. 23) 

The parameter 𝜆 is proportional to the ratio of energy stored elongationally to that 

stored in bending and is a measure of whether a thin plate will behave like a plate or 

a membrane. The solution to Eq. 2.20 is the sum of the solution to the following 

differential equations, 

(∇2 + 𝜂𝑚𝑛
2 )𝜙𝑎 = 0 (2. 24) 

 
Figure 2.2: First 5 mechanical modes of a circular membrane. The horizontally and vertically polarized 

degenerate modes are indicated with either an ‘H’ or a ‘V’.  
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(∇2 − 𝜉𝑚𝑛
2 )𝜙𝑒 = 0 (2. 25) 

Solving these with the boundary conditions 𝜙𝑚𝑛(𝑟 = 𝑎) = 𝛻𝜙𝑚𝑛(𝑟 = 𝑎) =0, we find 

𝜙𝑎 = 𝑐𝑜𝑛𝑠𝑡 × 𝐽𝑚[𝜂𝑚𝑛𝑠] cos(𝑚𝜃) (2. 26) 

𝜙𝑒 = −𝑐𝑜𝑛𝑠𝑡 ×
𝐽𝑚[𝜂𝑚𝑛]

𝐼𝑚[𝜉𝑚𝑛]
𝐼𝑚[𝜉𝑚𝑛𝑠] cos(𝑚𝜃) (2. 27) 

with the overall solution given by,  

𝜙𝑚𝑛(𝑠, 𝜃) = 𝑐𝑜𝑛𝑠𝑡 × (𝐽𝑚[𝜂𝑚𝑛𝑠] −
𝐽𝑚[𝜂𝑚𝑛]

𝐼𝑚[𝜉𝑚𝑛]
𝐼𝑚[𝜉𝑚𝑛𝑠]) cos(𝑚𝜃) (2. 28) 

and the constants 𝜂𝑚𝑛 and 𝜉𝑚𝑛 determined from the nth solution to the equation, 

𝜂𝑚𝑛

𝐽𝑚+1[𝜂𝑚𝑛]

𝐽𝑚[𝜂𝑚𝑛]
+ 𝜉𝑚𝑛

𝐼𝑚+1[𝜉𝑚𝑛]

𝐼𝑚[𝜉𝑚𝑛]
= 0 (2. 29) 

We numerically evaluate Eq. 2.23 and Eq. 2.29 to find  𝜂𝑚𝑛(𝜆) and 𝜉𝑚𝑛(𝜆) (Figure 2.3). 

As 𝜆 → 0, 𝜂𝑚𝑛 → 𝛼𝑚𝑛 and 𝜉𝑚𝑛 → 1/ 𝜆 and the membrane approximation is recovered.  

 

 

 
Figure 2.3: Numerically tabulated values of 𝜂𝑚𝑛 (left) and 𝜉𝑚𝑛 (right) for the first several mechanical 

modes. For small values of 𝜆, 𝜂𝑚𝑛 → 𝛼𝑚𝑛 and 𝜉𝑚𝑛 → 𝜆. 
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We compare the membrane approximation and the exact plate solution for 𝜙01 in 

Figure 2.4. Both solutions are similar near the central antinode. At the boundaries, the 

plate solutions bend within a length scale determined by 𝜆 (insets) to satisfy the 

boundary condition ∇𝜙(𝑟 = 𝑎) = 0. As 𝜆 becomes smaller, the plate-solution 

approaches the membrane solution but with an extremely large curvature near the 

clamped edge. This high curvature can lead to additional loss in NEMS(38). 

 

2.3 Dissipation Dilution 

Perhaps the most exciting development in the field of nanomechanics in recent years 

has been the emergence of dissipation dilution theory (DDT) as a guiding principle to 

both explain and engineer the quality factor in NEMS(34, 35, 38–41).  Although DDT 

has been used to understand the 𝑄 in a wide range of NEMS materials, it has not yet 

been applied to graphene. In the Zener theory of dissipation in an anelastic 

material(36), damping is not linear but occurs due to a phase-lag between stress and 

strain. In this model, the elastic modulus is replaced by a complex valued function, 

𝐸 → 𝐸(1 + 𝑖𝛿). Here, 𝜙 is a relatively frequency-independent constant that arises 

from internal loss. Putting this into Eq. 2.1, we arrive at the following equation of 

motion, 

 
Figure 2.4: Mode shapes for circular plates and membranes. 𝜙01 for a value of 𝜆 = .1 (left) and 𝜆 = .05 

with the insets showing the behavior near the clamped edge. The mode shape for a membrane (Eq. 

2.18) and plate (Eq. 2.28) are shown. 
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�̈�𝑚𝑛(𝑡) + 𝜔𝑝
2(1 + 𝑖𝛿)𝑎𝑚𝑛(𝑡) + 𝜔𝑚

2 𝑎𝑚𝑛(𝑡) =
𝐹𝑒𝑓𝑓

𝑚𝑒𝑓𝑓
𝑐𝑜𝑠(𝜔𝑡) (2. 30) 

Solving this similarly to the linearly-damped case, we obtain a solution slightly 

different than the damped harmonic oscillator, 

𝑧𝑛𝑚(𝜔) =
𝐹𝑒𝑓𝑓

(𝜔0
2 − 𝜔2) + 𝛿

𝑖𝜔𝑝
2

𝜔0
2 𝜔0

2

(2. 31)
 

However, if make the approximation 𝜔 ≈ 𝜔0, we obtain a Lorentzian response, 

𝐴𝑚𝑛(𝜔) =
𝐹𝑒𝑓𝑓/2𝜔0

√(𝜔0−𝜔 )2+(𝛿
𝜔𝑝

2

2𝜔0
2𝜔0)

2
(2. 32)

and can now make the correspondence between the quality factor of the intrinsically 

damped oscillator and the linearly-damped harmonic oscillator,  

𝑄 =
1

𝛿

𝜔𝑝
2 + 𝜔𝑚

2

𝜔𝑝
2

= 𝑄𝑖𝑛𝑡

𝜔𝑝
2 + 𝜔𝑚

2

𝜔𝑝
2

= 𝑄𝑖𝑛𝑡 (1 +
𝑘𝑚

𝑘𝑝
) = 𝐷𝑄𝑄𝑖𝑛𝑡 (2. 33) 

where 𝑄𝑖𝑛𝑡 =
1

𝛿
 is the intrinsic material quality factor and 𝐷𝑄 is called the dilution 

factor. A similar result may be obtained from energetics(40), directly solving for 𝑄 =

2𝜋
𝑊

Δ𝑊
. An approximate analytic form of Eq. 2.33 can be evaluated using Eq. 2.5 and 

Eq. 2.6 in the membrane limit of 𝜆 ≪ 1 (See Section B.1 for the full derivation), 

𝑄 ≈ 𝑄𝑖𝑛𝑡 (
1 + 𝜆2𝛼𝑚𝑛

2

𝜆(1 + 𝛼𝑚𝑛
2 𝜆)

) (2. 34) 

This expression is similar to those found for square membranes(44) and 

strings(38). We plot 𝐷𝑄 for the first 3 modes of a circular membrane vs. 𝜆 in Figure 

2.5 for both exact solution (Eq. 2.33), which we find with numeric integration, and 

the analytic approximation in Eq. 2.34.  
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In DDT, the 𝑄 can be maximized by increasing 𝜆, which can be accomplished either 

by increasing increasing 𝑇𝑎2, which is proportional to the elongational energy, or 

reducing 𝜅, which is proportional to the bending energy. This means the highest 

quality factors are achieved in thin, high-strain, large-area NEMS. We will further 

discuss the implications of dissipation dilution when applied to graphene NEMS in 

Chapter VI. 

  

 
Figure 2.5: Exact (solid lines) and approximate (dashed lines) 𝐷𝑄  for the first 3 modes of a circular 

plate. 
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CHAPTER III 

EXPERIMENTAL METHODS 

3.1 Graphene Transfer and Semiconductor Device Processing 

We fabricate graphene NEMS using conventional planar device processing techniques 

shown in Figure 3.1, followed by semi-dry transfer process(74), shown in Figure 3.2. 

The general process is as follows. First, degenerately-doped silicon wafers with a 

thermally grown oxide (typically 1 μm) are dehydrated at 400 °C for 30 minutes. The 

wafer is then placed under a large recrystallization dish with an opened bottle of 

hexamethyldisilazane (HMDS) for 2 hours. The HMDS forms a self-assembled 

monolayer that promotes adhesion of photoresist. We then spin on a film of AZ1512 

photoresist at 4000 RPM, yielding a resist thickness of ~1.5 μm. We then perform 

direct-write photolithography to expose large (~5 mm2) openings in the photoresist 

using a 405 nm laser and a dose typically between 250 − 400 μJ/cm2. The exposed 

patterns are developed by immersion in AZ300 MIF developer for 2 minutes followed 

by immersion in DI water followed by ~30 s of direct spraying with DI water. We then 

use a CHF3/Ar reactive ion etch, which etches SiO2 at a rate of ~35 nm/min, to etch 

the exposed SiO2 all the way to the silicon substrate, forming a via. The AZ1512 is then 

removed by sonication in acetone.  We then repeat this entire process to pattern an 

array of circular holes in the SiO2 with diameter between 4 μm and 25 μm. A thin 

(~few 100 nm) layer of SiO2 is left at the bottom of the holes to prevent shorting from 

collapsed graphene. A ~1 μm wide trench connects neighboring holes to allow gas to 

escape when the graphene drums are brought under vacuum(75).  
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Next, we perform a third step of photolithography to expose a grid surrounding the 

circular holes as well as the large vias. Then, we deposit a 5/50 nm layer of Ti/Pt using 

electron-beam evaporation. We use platinum since we find gold balls up during later 

high-temperature processing. The resist is removed by soaking in acetone overnight 

followed by sonication. 

 

Graphene is commercially acquired from various suppliers, typically Graphenea, on 

60 mm × 40 mm pieces of thin copper foil. The copper foil is divided in ~10 mm × 10 

mm pieces using a scalpel and stored for later. A rocking, rather than slicing, motion 

on a thick piece of plastic is used to cut the foil in order to prevent crumpling. 

 
Figure 3.1: Process flow for fabrication of substrates. We start with a commercially acquired 

degenerately doped silicon wafer with 1 μm of wet thermal oxide. 1. Spin on AZ1512 and expose a 

large region for a via with photolithography. 2. Use a CHF3 based reactive ion etch to etch the SiO2 all 

the way to the Si. 3. Perform a second step of photolithography to expose arrays of circular holes. 4: 

Use a CHF3 based reactive ion etch to partially etch the SiO2, leaving a ~300 nm thick layer at the 

bottom of the holes to prevent shorting. 5. Perform a final step of photolithography to expose the via 

and a grid for electrical contacts. 6: Evaporate a 5 nm of Ti for adhesion followed by ~50 nm of Pt. 7: 

Lift-off final photoresist layer overnight in acetone.    
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To transfer graphene, a piece of foil is placed on a smaller piece of PDMS/Plastic 

backing. The Graphene/Cu/PDMS/Plastic stack is placed on a spin coater, with the 

plastic side on the vacuum chuck. We then spin on PMMA A11 at 3000 RPM, yield a 

~3 μm thick layer, which we let air dry for 15 minutes. The plastic holds vacuum on 

the spin-coater while the PDMS provides enough static friction to prevent the foil 

from flying off. This is in contrast to placing the foil directly on the vacuum chuck, 

which leaves a dimple in the copper foil. We then remove the PDMS and use 2 minutes 

of O2 plasma cleaning to remove the exposed graphene on the backside of the 

PMMA/Graphene stack. We then place a hole-punched piece of Plastic/PDMS on top 

of the PMMA/Graphene/Cu to act as a scaffold. We sometimes use thermal release 

tape or polyamide tape instead of the Plastic/PDMS, with similar results. The 

Plastic/PDMS/PMMA/Graphene/Cu floated on ammonium persulphate (40 mg/ml) 

to etch the Cu, which takes several hours. The Plastic/PDMS/PMMA/Graphene is then 

sequentially floated in 3 DI water baths before being dried in air. 

 
Figure 3.2: Process flow for transfer of graphene onto target substrate. 1. Graphene on copper foil is 

acquired from commercial vendors. 2. A relatively thick layer of PMMA (~3 μm) is spun onto the 

graphene foil. A PDMS stamp is then placed on the PMMA/Graphene/Cu stack. 3. Cu is etched by 

floating PDMS/PMMA/Graphene/Cu foil on ammonium persulphate for several hours. 4. 

PDMS/PMMA/Graphene stack placed on target substrate and baked at 155 °C for >12 hours. 5. PDMS 

is peeled of cut off the PMMA and the PMMA/Graphene/Chip is placed in a furnace at 400 °C in flowing 

Ar/H2 for ~3 hours. 
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Meanwhile, the target chip is cleaned in O2 plasma cleaned and then baked on a hot-

plate at 400 °C for several hours. These steps promote graphene adhesion to the SiO2 

surface. Then, the chip is brought to 155 °C and the fully suspended PMMA/Graphene 

is placed on top of it. The PMMA/Graphene/Chip is left to adhere overnight (>12 

hours). We use tweezers or a scalpel to isolate the chip from the Plastic/PMMA 

support and remove it. We find some evidence that lower humidity values lead to 

higher yield of suspended graphene, however, we do not have definite confirmation 

of this. We also found that the particular batch of PMMA A11 has a significant impact 

on the yield of devices but we were unable to understand the exact mechanism behind 

this. The PMMA is removed at 400 °C under flowing H2/Ar (100/400 SCCM). The final 

step is manual removal (using tweezers or a micromanipulator) to remove the 

graphene between the via and the top electrode. This process yields arrays of 

electrically connected graphene membranes, each of which forms a single NEMS. A 

finished device is shown in Figure 3.3a while an array of devices with a Ti/Pt 

electrode is shown in Figure 3.3b. 

 

 
Figure 3.3: SEM images of finished graphene devices. a) False-colored SEM of a graphene drumhead. 

The dark blue region highlights the suspended graphene devices. Grain boundaries and contamination 

are visible on the surface. b) False-colored SEM of arrays of graphene drumheads. Electrodes are 

colored in yellow. Several failed devices are visible in the image. 
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3.2 Focused Ion Beam Lithography of Graphene NEMS 

In Chapter IV and Chapter V, we use FIB milling to fabricate suspended graphene 

NEMS with non-circular geometries. A more detailed description of the FIB-cutting 

approach will be presented in those chapters. In general, we use a FEI Helios 600i 

dual-beam FIB-SEM, which consists of a standard vertical electron column and a Ga+ 

ion column mounted at 52° from vertical. In this way, imaging electrons and milling 

ions can be co-localized on a sample. Prior to milling, we focus the Ga+ beam visually 

and confirm the focus using a series of linear test cuts. The ultimate resolution of Ga+ 

milling depends on the beam current. To achieve the highest resolution milling, we 

use beam currents of 1.1 pA, which is the lowest available on the FEI Helios 600i. With 

this dose, we find that a line cut with a well-focused beam takes about 1 ms to mill 

through a layer of graphene. All patterning is done using the built-in FEI patterning 

software using circular and square geometries as well as exclusion zones. More 

complex geometries could made by directly controlling the beam location, although 

we did not explore this. 

3.3 Actuation of Graphene NEMS 

Graphene NEMS have previously been actuated using a variety of techniques, 

including optically(77, 78), electrostatically(20, 54, 57, 79–82), electrothermally(63, 

83), or with piezoelectric shakers(67). In this work, we use a combination of 

electrostatic and optical actuation, described in the two following sections 

 
Figure 3.4 Ga+ FIB resolution vs. dose. Taken from(76).  
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3.3.1 Optical Actuation of Graphene NEMS 

Optical actuation is a valuable technique for driving graphene NEMS is desirable 

when there is no back-gate, for example graphene membranes fabricated on TEM 

grids(66, 84), or when precise control of the actuation efficiency of various 

mechanical modes(85) is required. In the optical drive scheme, a laser modulated at 

the drive frequency, 𝑓𝑑 , is focused onto the graphene membrane, with power, 

𝑃 = 𝑃0(1 + cos(2𝜋𝑓𝑑𝑡)) (3. 1) 

The laser periodically heats the membrane creating a photothermal drive force. The 

exact details of this interaction are still not entirely understood but it is an active area 

of study(47). We explore the optical drive process further in Chapter VII. 

3.3.2 Electrostatic Actuation of Graphene NEMS 

Graphene NEMS can be electrostatically actuated by applying an AC (𝑉𝐴𝐶 =

𝛿𝑉 cos(2𝜋𝑓𝑑𝑡)) and DC (𝑉𝑒𝑓𝑓 = 𝑉𝑔 − 𝑉𝑚𝐶𝑁𝑃) voltage between the graphene 

drumheads and a back-gate. 𝑉𝑔 is the supplied gate voltage and 𝑉𝑚𝐶𝑁𝑃 is the 

mechanical charge neutrality point(81, 86), which is often non-zero due to trapped 

charge in the graphene or the SiO2. Exploitation of this trapped charge to tune the 

resonance frequency is the basis for Chapter VIII.   

 

To see the effect of an electrostatic gate on a suspended graphene sheet, we start with 

the electrostatic potential energy of a parallel-plate capacitor, where the distance 

between the plates can vary, 

𝑈 =
1

2
𝐶(𝑥)(𝑉𝐴𝐶 + 𝑉𝑒𝑓𝑓)

2
(3. 2) 

Here, 

𝐶(𝑥) =
𝜖0𝐴

𝑑𝑒𝑓𝑓 − 𝑥
(3. 3) 

where 𝑑𝑒𝑓𝑓 is the effective non-displaced capacitor thickness and is given by 𝑑𝑒𝑓𝑓 =

𝑑𝑣 +
𝑑𝑜

𝜖𝑟
, where 𝜖𝑟 is the permittivity of SiO2, 𝑑𝑣 is the distance between the graphene 

and the SiO2, and 𝑑𝑜 is the oxide thickness. The electrostatic force felt by the 

membrane is thus, 
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𝐹 = −
𝑑𝑈

𝑑𝑥
≈ −𝐶′(𝑥)𝑉𝑒𝑓𝑓𝑉𝐴𝐶 −

1

2
𝐶′(𝑥)(𝑉𝑒𝑓𝑓)

2
(3. 4) 

where we’ve thrown away the −𝐶′(𝑥)(𝑉𝐴𝐶)2 term in since it will result in a force at 

twice the drive frequency, which will not be detected by a lock-in amplifier. The 

−𝐶′(𝑥)𝑉𝑒𝑓𝑓𝑉𝐴𝐶 term in Equation 3.4 results in an electrostatic drive force at 𝑓𝑑  with 

an amplification factor from 𝑉𝑒𝑓𝑓. The second −
1

2
𝐶′(𝑥)(𝑉𝑒𝑓𝑓)

2
 term results in a static 

force that can be used to tune the frequency (see section 3.6). 

 

One important consideration is that the electrostatic drive technique applies a 

symmetric force density across the membrane. From Eq. 2.7, we can see than a 

symmetric force integrated with an anti-symmetric (for example, the mode shape 

shown in right of Figure 3.5) will lead to no drive force. In theory, this means that the 

electrostatic drive technique cannot be used to excite higher order modes. In practice, 

small imperfections in the geometry or the mode shape of the membranes will break 

the perfect asymmetry, allowing a weak drive force even with anti-symmetric modes.  

 

 
Figure 3.5: Diagram of the electrostatic drive force for a symmetric mode (left) and an antisymmetric 

mode (right).  
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3.4 Two-Beam Optical Interferometry    

 

We use two-beam interferometry in either a Michelson (shown in Supplementary 

Figure A.5) or Fabry-Perot (described in Section 3.7) configuration to transduce 

mechanical motion (87). Both transduction methods are mathematically equivalent 

to two-beam interference. However, the Michelson setup requires active stabilization 

of the reference mirror to reduce mechanical noise. We focus an incident optical field, 

𝐸𝑖, with wavelength 𝜆, onto the graphene drumheads, which reflect a small amount of 

light, 𝐸1 = 𝐸0,1𝑒𝑖
2𝜋

𝜆
×0. The remaining light reflects off the silicon back-plane, with 

some attenuation, giving a reflected field 𝐸2 = 𝐸0,2𝑒𝑖
2𝜋

𝜆
×2(𝑑+𝑥), which has propagated 

an additional distance 2(𝑑 + 𝑥). 𝑑 is the equilibrium graphene-silicon distance and 𝑥 

is the displacement of the graphene sheet from equilibrium. We ignore further 

reflections from the graphene sheet for the Fabry-Perot, which will be small. The 

displacement 𝑥 is given by, 

𝑥 = 𝑥0 cos(2𝜋𝑓𝑑𝑡) (3. 5) 

At the photodetector, the intensity is given by, 

𝐼 ∝ |𝐸1 + 𝐸2|2 = (𝐸0,1)
2

+ (𝐸0,2)
2

+ 2𝐸0,1𝐸0,2 cos(2𝑑 + 2(𝑥0 cos(2𝜋𝑓𝑑𝑡)) (3. 6) 

Ignoring the DC terms, which will not be detected by a lock-in amplifier, the intensity 

on the photodiode is given by, 

𝐼 ∝ 2𝐸0,1𝐸0,2(cos(2𝑑) cos(2(𝑥0 cos(2𝜋𝑓𝑑𝑡)) − sin(2𝑑) sin(2(𝑥0 cos(2𝜋𝑓𝑑𝑡))) (3. 7) 

 
Figure 3.6: Diagram of two beam optical interferometry. The reference mirror can either be on a 

separate arm of the interferometer or the back-plane in a Fabry-Perot cavity.   
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Taking 𝑥0 to be small (which we expect to be ~several nm) and combining constant 

terms, 

𝐼 ∝ −𝐼0𝑥0 cos(2𝜋𝑓𝑑𝑡) (3. 8) 

Thus, 𝑥0 can be obtained above the DC background using lock-in amplification. For 

the purposes of this work, the vibrational amplitude is not-needed and we instead use 

the uncalibrated voltage obtained from the photodiode. Various methods have been 

developed to calibrate the motion of graphene nanodrums(61, 88) when an exact 

measurement of the vibrational amplitude is required. 

3.5 Scanning Optical Interferometry 

In many applications, such as mass spectrometry(32), an accurate determination of 

the mechanical mode shape is crucial. This can be accomplished either through direct 

AFM imaging(89) or with non-local scanning optical interferometry. In scanning 

optical interferometry(79), the position of measurement laser, 𝒓𝒑, is rastered across 

the drumhead and the amplitude and phase of the oscillation is measured at each 

position. The measured amplitude is different than the true mode shape due to the 

Gaussian beam spot. The transduced amplitude is proportional to the overlap of the 

mechanical mode and the laser spot, 

𝐴(𝒓𝒑) ∝ ∫ 𝑑𝐴 exp (−
(𝒓 − 𝒓𝒑)

2

2𝜎𝑝
2

) 𝜙𝑚𝑛(𝒓) (3. 9) 

where 𝜎𝑝 is related to the full-width at half-maximum as 𝜎𝑝 = 𝐹𝑊𝐻𝑀/2.355. For the 

40x, .6 NA objective used in this work, the dilation due to the spread of the laser spot 

is negligible. In our work, we scan the laser with a galvometer and an optical relay 

system. This We will describe the scanning method in Chapter VII in more detail. 
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3.6 Electronic Frequency Tuning of Graphene NEMS 

 
The ability to tune the resonance frequency of graphene NEMS using an electrostatic 

gate plays a crucial role in many chapters of this work and is highly desirable for many 

applications. The second term in Equation 3.4, −
1

2
𝐶′(𝑥)(𝑉𝑒𝑓𝑓)

2
, allows for the tension 

in a graphene NEMS to be changed, thus thing the resonance frequency. A common 

way to visualize this is with a spectrogram plot, where the gate-voltage is plotted on 

the x-axis, the drive frequency on the y-axis, and the vibrational amplitude encoded 

in the colormap. This is shown in Figure 3.7 for a graphene NEMS. By extracting the 

peak amplitude (either through curve-fitting or simply finding the max-amplitude), a 

plot of resonance frequency vs. 𝑉𝑔 can be generated.  

 

 

Figure 3.7: Spectrogram showing the amplitude-frequency response as a function of the gate voltage  

(left) along with the resonance frequency extracted from peak-fitting (right). 
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The behavior of 𝑓(𝑉𝑒𝑓𝑓) gives valuable information about the mechanical properties 

of a device. References(29, 62) developed a model for 𝑓(𝑉𝑒𝑓𝑓) and find, 

(2𝜋𝑓0)2 =
2.40482𝑇0

𝑎2𝜌
−

𝜖0(𝑉𝐷𝐶)2

𝑑3𝜌
+ 0.1316

𝑌𝜖0
2(𝑉𝐷𝐶)4

(1 − 𝜈2)𝜌𝑇2
(3. 10)   

𝑇 = 𝑇0 +
𝑌𝑎2𝜖0

2(𝑉𝐷𝐶)4

(1 − 𝜈2)128𝑑4𝑇
(3. 11) 

for the fundamental mode of a circular drumhead. A detailed derivation of this 

expression is presented in the supporting information of reference(62). The first term 

is the resonance frequency calculated from Eq. 2.1 in the absence of an additional 

voltage. The second term leading to a reduced frequency is due the reduction in the 

total energy of the system due to capacitive softening with the added gate voltage(90), 

and the third term is added tension due to the electrostatic pulling the membrane 

towards the back-gate.  

 

Eq. 3.10 results in a characteristic “inverted W” shape. For the gate-voltage values 

used in this work (< |15| V), Eq. 3.10 can yield several different shapes depending on 

the elastic and geometric parameters. Figure 3.8 show these for several values of 𝜎0. 

Fitting this function with the known geometric parameters allows a measurement of 

the three unknown elastic properties 𝜌, 𝑌, and 𝑇, which are typically very hard to 

measure (see Chapter VI).  

 

 

Figure 3.8: 𝑓0(𝑉𝐷𝐶) for initial tension values of 0.01 N/m, 0.1 N/m, and 1 N/m. The other parameters 

are typical for a graphene NEMS and are as follows: 𝑅 = 5 μm, 𝑑 = 700 nm, 𝑌 = 100 N/m, 𝜌 =

10 × 𝜌𝑔.   
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We note that the robustness of this fitting method is highly dependent on both the 

shape of the curve (mainly the depth of the local minima) as well as the how large a 

range of gate-voltages are measured (with a range often set arbitrarily(48, 62)). 

Previous work that used a similar fit found that the theory matched the data only a 

reasonably low gate voltages(48). One cause of this fitting discrepancy at high 

voltages is correlations in the fit parameters (〈𝑌, 𝜌〉 and 〈𝑌, 𝑇〉) of the non-linear least-

squares function become highly correlated when the concave section of 𝑓(𝑉DC) 

becomes small compared to the concave up part of the curve. This high fit correlation 

value leads to diverging values of the fitted parameters and the three-parameter fit 

method is no longer appropriate.  

3.7 Experimental Setup for Fabry-Perot Detection 

For all the work described in this thesis, with the exception of Chapter IV, we use a 

Fabry-Perot detection scheme, shown in Figure 3.9 
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Our experimental setup is diagramed in Figure 3.9. We use a 633 nm stabilized HeNe 

laser (Thorlabs HRS015B). The beam is passed through a half-waveplate to rotate the 

polarization of the laser and then coupled into the detection beam-path with a 

polarizing beamsplitter. The half-waveplate can be rotated to change the amount of 

laser light coupled into the detection path. Following the polarizing beamsplitter, the 

laser is passed through a quarter-waveplate, which rotates the laser from linear to 

circularly polarized light. Next, the laser is reflected off a closed-loop 2-axis 

galvometer (Thorlabs GVS212) and is deflected the light by a small angle. The 

deflected beam is then passed through 550 nm longpass dichroic beamsplitter 

followed by a scan lens (𝑓 = 150 mm) and tube lens (𝑓 = 300 mm). Both lenses are 

 
Figure 3.9: Diagram of the optical experiment used to actuate and transduce the motion of graphene 

NEMS. The devices are held in a vacuum chamber below 10−5 Torr, which can be moved 50 mm in XYZ 

under using motorized translation stages. BS: 50:50 beamsplitter. PE: Pellicle beamsplitter. DCM: 

Dichoric mirror (550 nm longpass). FSM: Fast-steering mirror. 𝜆/2: Half waveplate. 𝜆/4: quarter 

waveplate. AOM: Acousto-optic modulator. PBS: polarizing beamsplitter on motorized flipper. APD: 

Avalanche photodiode. All aspects of the experimental apparatus are controlled using custom-written 

LabView control software, allowing experiments to be performed remotely.    
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2” diameter achromats to reduce aberrations as the beam is displaced from the center 

of the lenses. The beam then passes through a pellicle beamsplitter, to reduce the 

beam shift when passing through a thin plate, on a motorized-flip mount before being 

focused onto the sample by a 40×, 0.6 NA plan-flour objective lens with a glass-

correction collar. On reflection from the sample, the beam passes back through the 

optical path and is rotated 90° from the incident polarization by the quarter-

waveplate. The reflected beam thus passes through the polarizing beamsplitter 

before detection by an avalanche photodiode. 

 

A second optical path uses a 445 nm laser which is passed through an acousto-optic 

modulator (AOM) and deflected with a second galvometer before coupling into the 

main optical path with the 550 nm longpass. The blue laser is blocked by a 500 nm 

shortpass filter before reaching the photodiode. The modulation on the AOM is driven 

between 0 − 1 V supplied from the lock-in amplifier. 

 

A simple white-light microscope, coupled into the system by the pellicle beamsplitter, 

is used to image the sample and position the lasers at the correct location.  

 

The samples are held under vacuum at 10−5 torr and placed in a vacuum chamber. 

The vacuum chamber can be moved in XYZ with motorized translation stages for the 

XY and motorized Labjack for Z. A custom window-mount allows us to use a 1 mm 

thick optical window with a visible-light AR coating, which is within the range of glass 

correction on the objective lens. The sample itself is mounted on a PCB which and is 

connected the signal and ground wires of a BNC feedthrough.  

 

A spatial map of the mechanical mode shape can be obtained by scanning the position 

of the laser spot on the graphene drumhead. In contrast to previous work where the 

sample is scanned with a fixed laser, we use a closed-loop galvometer and optical 

relay system to scan the laser over the drumhead surface of the drumhead, allowing 

for much faster acquisition of spatial maps.  
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All parts of the experimental apparatus are computer controlled via USB through 

LabVIEW, allowing for fully remote measurements to take place. 
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CHAPTER IV 

SHAPE TAILORING TO ENHANCE AND TUNE THE 

PROPERTIES OF GRAPHENE NANOMECHANICAL 

RESONATORS 

From D. Miller, B. Alemán, Shape tailoring to enhance and tune the properties of 

graphene nanomechanical resonators. 2D Mater. 4, 025101 (2017). I performed the 

fabrication, experimental measurements, data analysis, and am the primary author 

on the publication. Benjamín Alemán is my supervisor.  

4.1 Introduction 

Nanomechanical resonators, such as freely vibrating nanometer-scale beams and 

membranes, have enabled ultrasensitive physical measurements at the level of single 

atom mass(17) and single electron charge(91) as well as the exploration of quantum 

mechanics in macroscopic mechanical systems(92). Among the most promising 

applications of nanomechanical systems is the ability to detect extremely small 

forces, such as those that arise from chemical or biological processes(93) or from 

electronic or nuclear spins(18), which is ultimately limited by thermal fluctuations 

due to mechanical damping. The minimum detectable force(94) for a mechanical 

resonator at a given temperature is directly related to the coefficient of mechanical 

damping as 𝑑𝐹𝑚𝑖𝑛 ∝ √𝑏, where the damping coefficient, 𝑏, is related to the resonator 

mass, mechanical resonance frequency and quality factor through 𝑏 ∝ 𝑚𝑒𝑓𝑓𝑓0/𝑄. 

Thus, the ideal force sensor would have low mass, relatively low tension, and a high-

quality factor.    

 

Low-dimensional materials such as nanotubes and two-dimensional crystals, 

including graphene, have begun to see wide use as nanomechanical systems because 

of their inherently small mass and strong interactions with their environment(19, 20, 

48, 95). Graphene is exceptionally well-suited for nanomechanical systems because it 
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also offers high intrinsic stiffness, strength(96), and amenability to strain tuning(81). 

Additionally, fabrication of large-scale arrays of graphene drumhead resonators is 

well developed(84) and drumheads are frequently used in nanomechanical 

experiments. However, although various techniques have been used to increase the 

quality factor in graphene drumheads, such as using of few-layer reduced graphene 

oxide membranes(97), or larger area graphene drumheads(66), they also add 

significant mass, leaving the force sensitivity unchanged. Thus, new approaches are 

required to realize graphene mechanical resonators that both have high quality 

factors and the ultra-low mass. 

 

Tailoring the geometric shape and clamping of nanomechanical resonators is a 

promising alternative to achieve reductions to the mass while also lowering tension 

and damping(35, 41). Although such geometric tuning of graphene is still in its 

infancy, the few studies that have explored geometric effects indicate that shape and 

size has a large role in the mechanical properties of graphene resonators. For 

example, low tension H-shaped graphene suspended structures(67) were found to 

display order-of-magnitude increases to the mechanical Q along with a significantly 

reduced damping coefficient. In contrast, doubly-clamped beams(54) show quality 

factors and mass similar to graphene drums, indicating the need for more detailed 

studies to elucidate the role of geometry and tension on the mechanical properties of 

graphene resonators. However, the arbitrary shaping of suspended graphene 

remains elusive, which is in part due to current fabrication approaches, so many 

potentially compelling device geometries, even as simple as a singly clamped 

cantilever, have yet to be fully explored. 

 

Fabrication of arbitrarily patterned graphene mechanical structures via resist-based 

lithography(54, 58) and planar processing has not been achieved. This is partly due 

to the cumbersome, multistep nature of clamping and suspending such devices, which 

involves multiple lithography steps, thin film depositions, dry and wet etching, and 

critical point drying.  In many cases, the etching chemistry needed to define the 

mechanical clamp is incompatible with graphene, which precludes the approach 
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altogether.  An alternative patterning approach, one that circumvents challenges seen 

in traditional lithography, has emerged that employs Focused Ion Beam (FIB) 

milling(98) of free-standing graphene. This approach has been used to pattern 

graphene into diffraction gratings(99), nanopores(100), and nanowires(101).  The 

FIB technique has seen little use as a method to pattern single-layer graphene 

nanomechanical systems and has presently only been used to fabricate low-aspect 

ratio cantilevers(102) with no associated improvements to the 𝑄. Thus, the viability 

of FIB milling as a general approach to achieve arbitrarily shaped graphene 

mechanical resonators remains an open question. Furthermore, because the 

geometric parameter space of graphene nanomechanical resonators is largely 

unexplored, it is unknown which shapes or clamping configurations possess less 

mechanical damping.  

 

In this letter, we demonstrate that FIB milling is an effective tool to shape free-

standing graphene membranes into a wide variety of two-dimensional geometries, 

with device features ranging in size from several tens of nanometers to a few 

micrometers. Many of these structures, such as crosses, triangular cantilevers, and 

tethered cantilevers, have not been previously observed in a suspended two-

dimensional material. Furthermore, we employ optical techniques to actuate and 

detect the mechanical motion of the graphene structures in order to characterize 

their mechanical properties, such as the 𝑄, resonance frequencies, and force 

sensitivities. We compare unmodified drumheads to the FIB milled structures and 

identify that singly-clamped graphene devices can display order-of-magnitude 

enhancements to the quality factor while also reducing mass, making them an ideal 

candidate for graphene force sensors. We also demonstrate that shape can be used to 

introduce mechanical nonlinear behavior and also stabilize the frequency of devices 

under optical probing, showing the broad generality of nanomechanical properties 

that may be tuned through geometric shape. 
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4.2 Fabrication 

The starting template for the shaped graphene devices is a graphene sheet suspended 

over a pre-patterned circular hole, forming a freely suspended graphene mechanical 

resonator with uniform edge clamping (i.e. a circular drumhead). We used 

commercially available single-layer graphene on holey silicon nitride grids (Ted Pella 

Part# 21712) for device templates(98, 99). Each grid contains a periodic array of 

several thousand individual circular drumheads, each with a diameter of 2.5 μm. To 

characterize the quality of the graphene prior to milling, we used transmission 

electron microscopy (TEM) and Raman microscopy. We observe some degree of 

surface contamination under TEM and SEM, which is an unavoidable byproduct when 

transferring CVD graphene using standard polymer-based techniques (Figure 4.1 and 

Supplementary Figure A.1). The Raman spectrum typical of low-defect, annealed 

monolayer graphene (Supplementary Figure A.2) that is relatively free of defects 

(103). We also use selected area electron diffraction (SAED) to confirm the 

crystalline, single-layer nature of the graphene (Supplementary Figure A.3). 

  

Graphene resonators were shaped by irradiative milling of the suspended graphene 

membrane template with a focused ion beam or FIB. The “positive-tone” FIB milling 

process sputters material from specified regions of the membrane to obtain the 

desired device geometry. Milling was accomplished with a commercial gallium FIB 

(FEI Helios 600i Ga+ SEM-FIB) operated in vacuum at 30 kV and with 1.1 pA ion 

currents to minimize damage due to the spread of the ion beam. Typical ion doses 

required to mill through the graphene were 8.5 − 17 pC/μm2, corresponding to 

0.06 − 0.12 μm2/s milling rates. Prior to fabricating devices, a brief snapshot image 

was taken with the FIB to orient the milling patterns. Snapshots were taken of 

drumheads as well. During the snapshot, we apply an ion dose of ~.0007 pC/μm2, 

which is 10000 times less than the dose required to mill graphene. Examples of the 

FIB milled geometries are shown in Figure 4.1 and Supplementary Figure A.4. To 

demonstrate the flexibility and robustness of our technique, we fabricated similar 

devices from graphene suspended over cavities (Supplementary Figure A.4). 
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We use four types of cuts to pattern the graphene. These cuts include a vector cut, 

where a single line is milled into the graphene with width determined by the Gaussian 

beam waist of the ion beam, a raster cut, where the beam passes over an area in many 

passes, and two types of single-pass directional raster cuts, shown in Figure 4.1f-g, 

where the serpentine raster is either directed away from or towards the device. The 

type and order of cuts dictated possible device geometries. In some cases, using the 

incorrect sequence of these cuts led to device failure.   

 

We monitored the entire cutting process using the non-destructive scanning electron 

microscope (SEM) imaging system before, during, and after fabrication (Figure 4.2). 

This allowed us to fabricate devices in regions with fewer particulate contaminates, 

holes, and folding (multilayer) defects, while also allowing us to determine successful 

cutting strategies for each of the device geometries. For instance, we could observe if 

a particular cut caused device failure through tearing or rupturing and subsequently 

 

Figure 4.1: SEM images of FIB-fabricated graphene NEMS. (a) Graphene doubly-clamped beam with 

600 nm width. (b) Cross with 600 nm bar widths. Peeled areas of graphene are visible around the edge 

of the circular hole. (c) Tethered cantilever with aspect ratio of 1.66 achieved through use of stabilizing 

tethers (d) Triangular cantilever with a 90-degree tether angle. (e) Graphene scroll with width ~25 

nm spanning across the entire hole with a 100:1 aspect ratio. Rolling of the graphene is visible in the 

inset (Scale = 70 nm). (f) Edge of a graphene beam where the ion beam mills away from the device with 

local RMS roughness of 2.47 nm (g) Edge of a graphene beam where the ion beam mills towards the 

device with local RMS roughness of 0.23 nm.   
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adjust the cutting sequence or type accordingly. Post-fabrication SEM 

characterization generated maps of devices, which were used during optical 

characterization to locate and probe specific devices. We used the FIB patterning 

approach described above to generate a variety of device geometries. These include 

crosses, beams, two cantilever style geometries (Figure 4.1), coupled beams (Figure 

4.2b), meshes, scrolls, and tethered trampolines (Supplementary Figure A.4). Many of 

these geometries have not been previously achieved in suspended graphene. This 

patterning technique achieved feature sizes as narrow as 10 nm, pitch resolution less 

than 100 nm, and length-to-width ratios as high as 250:1. We also generated edge-

clamping configurations ranging from double-clamping (e.g. in simple beams) to 48 

independent clamps (e.g. in trampolines), with clamp widths ranging from 10 nm to 

1 μm.  

 

Each device architecture required a particular, manually defined sequence of FIB cuts, 

which was largely determined by the need to manage tension or strain during device 

fabrication. Tensioned graphene, unlike many commonly FIB milled bulk 

materials(104), such as silicon or diamond, is susceptible to warping, tearing, and 

rupturing due to asymmetric strain that is introduced during FIB milling.  An 

illustration of tension-driven failure in a simple beam device is shown in Figure 4.2a.  

In this example, an initial raster cut removed graphene from the left half of the 

graphene drumhead, resulting in tension originating only from edge-clamping on the 

right half of the membrane. As milling proceeded on the right side of the drumhead, 

tension became concentrated near the center causing the device to stretch and then 

tear. We observed that larger milled regions led to a greater tension imbalance 

around small device features, limiting FIB milling to areas of less than ~500 nm in 

lateral dimensions when tension asymmetries were not managed and controlled. 

However, once the proper cutting sequence for a given geometry was established, 

fabrication yield was near 100%. 
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We identified several methods to controllably relieve tension in the devices to avoid 

tension-driven failure. These include specifying the mill direction, specifying the 

order of particular cuts, and using single-pass or multiple pass milling. Simple 

structures such as crosses and doubly-clamped beams could be shaped with high 

repeatability through several methods, including directional single-pass raster cuts 

or a vector cutting method shown in Figure 4.2c. In the vector cutting method, a series 

of vector cuts are used to etch the outline of the shape into the graphene. The ion 

beam then rasters around the region, causing the graphene to peel away from the 

device.  

 

The coupled beam geometry, consisting of two wide doubly clamped beams (500 nm 

wide, 2.5 μm long) coupled together through a narrow ribbon (50 nm wide, 500 nm 

long), required management of tension around the central ribbon, which was very 

sensitive to asymmetric tension. One successful milling sequence, shown in Figure 

4.2b, starts by defining the narrow ribbon vector cuts on both sides to isolate it from 

tension imparted during later milling. Then, a single pass raster on both sides of the 

drumheads leaves a single 1.5 μm by 2.5 μm beam. Finally, single pass raster cuts on 

 

Figure 4.2: FIB milling process for different graphene NEMS geometries. (a) Sequence of images 

showing a failure during fabrication of a doubly-clamped beam. (b) Successful fabrication of a coupled 

beam. The narrow central ribbon is protected from excess tension by two isolating vector cuts in the 

center of the structure. (c) One of several fabrication methods for a cross. Vector cuts are used to 

outline the cross shape.  Then, a parallel raster peels the graphene away from the device. (Scale Bar = 

500 nm). 
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either side of the thin ribbon to leave the freestanding, coupled beam geometry. This 

structure is the first example of coupled beams in graphene, which have been 

previously shown(105) to display complex non-linear dynamics and chaos in 

resonators fabricated from bulk materials. 

 

We were able to fashion the graphene into nanoribbons with widths of 40 nm and 

lengths of 2.5 μm, which we achieved using a single pass directed raster towards the 

ribbon. The raster direction here was crucial, as outward raster cuts or multiple pass 

raster cuts frequently resulted in failure of the tether.  In contrast, an inward raster 

severs the edge clamp first in order to relieve strain and thereby stabilize the ribbon 

as it forms. By reducing the ribbon width below ~40 nm, the ribbon spontaneously 

narrows and changes into a structure resembling a nanoscroll(99). We achieved 

nanoscrolls with widths of 10-15 nm that spanned the entire 2.5 µm width of the 

drumhead template, yielding an aspect ratios as high as 250:1. The nanoscroll and 

nanoribbon structures were fashioned as stand-alone devices (Figure 4.1e) and also 

served as tethers in more complex structures such as tethered cantilevers (Figure 

4.1c) and trampolines (Supplementary Figure A.4). 

 

The raster direction relative to the edge of a device feature also affected the RMS 

roughness of the edge. A raster away from an edge with a single pass (Figure 4.1f and 

Supplementary Figure A.1) resulted in a local edge roughness of 2.47 nm. A raster 

towards an edge resulted in a smoother edge with an edge roughness of 0.23 nm 

(Figure 4.1g). Based on SEM, these smooth edges are likely due to scrolling similar to 

that evident in the device in Figure 4.1d. Edge roughness can lower the thermal 

conductivity(106), reduce electron mobility(107), and increase damping(108) of 

graphene devices and reducing the edge roughness using FIB milling could be an 

effective route towards improving these characteristics. 

 

FIB milling introduces some degree of defects and contamination when milling bulk 

materials or graphene(109). We investigated these effects with Raman and TEM. 

Even at the relatively low ion doses used in this work, both the lightly dosed 
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drumheads and the milled devices had Raman spectra consistent with increased 

disorder in the graphene (Supplementary Figure A.2). This is in accord with previous 

studies of FIB milled or otherwise patterned monolayer graphene(110–112). We 

attribute this damage to deposition of amorphous carbon during SEM imaging or FIB 

milling, to the FIB snapshot images taken to orient the milling, and to the FIB 

fabrication itself. We also expect the cut edges in the FIB milled devices to contribute 

significantly to the disorder in the observed Raman data(113). To confirm that the 

fabricated devices are still crystalline, we perform SAED using TEM on the graphene 

before and after FIB irradiation, and we observe no difference in the diffraction 

patterns (Supplementary Figure A.3), so milled devices remain crystalline. Since all 

the devices studied in this work were exposed to a similar, relatively low amount of 

ion irradiation, we attribute the enhanced mechanical properties described below to 

the geometric shape rather than the FIB irradiation. Damage due to the FIB process 

could be reduced in future work through use of more localized etching processes, 

such as helium FIB milling(111) or water-assisted etching(112), or by a post-

fabrication annealing step. 

4.3 Mechanical characteristics 

Having used FIB milling to demonstrate robust and reproducible control over the 

geometric shape of suspended graphene mechanical structures, we now turn to 

discussing the mechanical properties of some of these structures. Our central data 

include amplitude and phase spectra obtained via Michelson interferometry(114) 

modeled with a driven damped harmonic oscillator to infer the 𝑄, damping, mode 

frequencies (𝑓𝑛), and corresponding amplitudes. We optically drove the mechanical 

resonators with an amplitude modulated 445 nm blue laser, with tunable power 

output, P0. The power of the blue laser incident on the drumheads is given by, 𝑃 =

𝑃0

2
(1 + cos(2𝜋𝑓𝑑𝑡)) which has an AC term, leading to photothermal actuation(66, 84), 

as well as a DC term, leading to optical heating and increased strain in the devices(48). 

A detailed diagram of the optical experiments is shown in Supplementary Figure A.5. 
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We first probed the amplitude response of drumhead resonators (Figure 4.3) to 

establish a baseline for comparisons with etched geometries. Although these 

drumheads were not ion milled, they were irradiated through the initial ‘snapshot’ of 

the devices. We measured eleven 2.5 μm diameter drumheads and found a center 

frequency 𝑓0 = 21.54 ± 4.79 MHz, 𝑄 = 48.85 ± 13.04 and a damping coefficient 

of 𝑏 = 2.7 pg/s. From 𝑓0, we calculate a minimum possible strain of strain of 

𝜖~1 × 10−5 (Section A.1), which is comparable to previous measurements of 

drumheads using graphene grown via chemical vapor deposition and transferred 

using sacrificial polymer layers(66). 

 

We find the mechanical properties of etched geometries differ significantly from 

drumheads. In general, the etched geometries have lower resonance frequencies and 

less damping. Figure 4.3 shows the measured frequencies and quality factors for 

several device geometries. The beams (with width of 1000 nm) and crosses (with 

cross bar widths of both 600 nm and 1000 nm) display lower 𝑓0 and similar quality 

factors compared to drumheads. Therefore, the average damping relative to 

drumheads decreases by ~50% for the 600 nm cross and more modestly for the 

beams and 1000 nm crosses. Damping reduction is more pronounced for the 

cantilever geometries; for the tethered cantilever (Figure 4.1c), we observe 𝑓0 =

10.11 ± 1.22 MHz and 𝑄 = 137.19 ± 31.54 leading to an average damping of 7.5% 

 

Figure 4.3: Resonance frequencies and quality factors for FIB shaped devices. Error bars indicate the 

standard deviation of f0 and Q for a given device geometry. Triangular cantilevers of tether angles 

ranging from 15 to 90 degrees are grouped together. 
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that of the drumheads. For the triangular cantilever devices (Figure 4.1d), we find 

𝑓0 = 3.79 ± 1.16 MHz and 𝑄 = 467.74 ± 166.55 and a mechanical damping 

coefficient that is 1.1% of that seen in the drumheads. 

 

The cantilevered geometries presented here are unique due to their large aspect 

ratios, up to 1.66 in this work compared to less than 1 for previously fabricated 

graphene cantilevers(102). We observe a significantly increased amplitude response 

for both types of cantilevers, roughly by a factor of 10 compared to drumheads at 

similar optical drive powers (Figure 4.4). This result is expected due to the lower 

resonance frequencies and larger displacements of cantilevers. We are able to use this 

transduction sensitivity to resolve a thermally driven resonance for triangular 

cantilever devices with no external drive (Supplementary Figure A.6), which we are 

unable to see for any other device geometry.  
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We also observe a markedly enhanced nonlinear response, typical of a softened 

duffing oscillator(58) for all measured tethered cantilevers at low optical drive 

powers of ~20 − 40 μW. For comparison, drumheads were driven up to ~350 μW 

with no discernable departure from a linear response. This can be understood by 

realizing that the onset of geometric non-linearity in cantilevers scales with the 

aspect ratio(115). Another factor could be a large strain-driven tension in the tethers. 

Finite element simulations (Supplementary Figure A.7) on the tethered cantilever 

geometry show that large strain-driven tension arises in the tethers during 

mechanical oscillations, which could contribute to the observed non-linear behavior 

in this structure. 

 

 Similar non-linearities have been exploited in other nanomechanical systems to 

reduce noise(116, 117), tune quality factors(118), couple mechanical modes(29), or 

 

Figure 4.4: Comparison of the amplitude response of a tethered cantilever and of an unmodified 

drumhead. (a) Amplitude response of a tethered cantilever device at increasing optical drive powers. 

At high drive power, the resonance frequency lowers and the amplitude response curve become multi-

valued and displays hysteresis; traces going from high to low frequency are shown solid green, while 

those going from low to high frequencies are shown in dashed green. (b) Amplitude response for a 

typical drumhead device; plotted on the same scaled y-axis as (a) and at increasing drive power. A 10-

fold decrease in the amplitude response is observed for the drumhead compared to the tethered 

cantilever. A trend towards increasing frequency with higher optical drive powers is seen with the 

drumheads, likely due to thermal contraction of the graphene as it is heated by the DC component of 

the optical drive. 
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as a means to improve mass sensitivity(119). Although this type of non-linearity has 

been observed previously in graphene(66, 67, 95), the comparative drive powers 

reported here to achieve a large non-linear response indicates that the tethered 

cantilever geometry could be an ideal device architecture for future studies of non-

linear graphene nanomechanics. 

 

In terms of reducing damping, the triangular cantilever geometry proved the most 

promising. This geometry consists of two ~750 nm long, ~200 nm wide tethers 

supporting a central platform (Figure 1.2d) with the angle between the tethers 

ranging from 15 degrees to 120-degrees. Due to the low bending rigidity of graphene, 

many of the devices flip upwards to some degree (Supplementary Figure A.4). There 

could be an additional degree of stabilization of the cantilevers due to contamination 

leftover from the fabrication process. A typical amplitude response curve for a device 

with a 90-degree tether angle is shown in Figure 4.5a; this device has a 𝑄 = 628. From 

 

Figure 4.5: Mechanical response of triangular cantilever. (a) Amplitude (blue) and phase (red) 

response of a device with a 90-degree tether angle. The response curves are fit to a driven damped 

harmonic oscillator model (black lines) with a 𝑄 = 628. (b) Mechanical damping plotted against the 

tether angle for the triangular cantilever devices. A trend towards higher dissipation is seen as the 

frame angle increases. (c) Amplitude (red) and frequency (blue) as function of optical drive power. The 

black line is a linear fit to the amplitude response data. A linear response is observed for low drive 

powers. At high drive powers, a reduction in the measured amplitude and an irreversible increase to 

the frequency is seen, likely due to structural changes in the device. 
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this data, we see that the triangular cantilevers generally have frequencies 80% lower 

than drumheads but have higher 𝑄, and lower mass, yielding a damping coefficient 

that is two orders of magnitude smaller than the value for drumheads. We observe 

that the mechanical damping decreases with tether angle, reaching its minimum 

value at 30-degrees. Our data from these measurements is summarized in Figure 

4.5b. A device with a 30-degree tether angle gave a measured 𝑄 of 849, which is the 

highest Q to date for a graphene cantilever at room temperature(102). In this case, 

the damping dropped to 0.47% the value for drumheads. One key difference between 

the triangular cantilever and the other device geometries is that its structure cannot 

sustain much in-plane tension, suggesting that low stress, low tension graphene 

mechanical resonators may yield lower damping. Because smaller angles support less 

tension, we would expect them to yield higher 𝑄, in accord with our findings. 

 

To further explore the role of tension in triangular cantilevers, we investigated the 

effect of optical drive power on the amplitude and resonance frequency, both shown 

in Figure 4.5c, for a device with a 90-degree tether angle. First, we find the amplitude 

increases linearly and reversibly over a ~100 μW range of optical drive, setting a 

minimum dynamic range of 33 dB. Furthermore, the response remains Lorentzian 

over the entire power range, unlike the tethered cantilevers, which go non-linear at 

relatively low power. Over the same power range, we find that 𝑓0 remains relatively 

constant. The invariability of 𝑓0 in the reversible regime and the broad linear 

response give a strong indication that any structural changes due to power 

absorption (i.e. thermal expansion or contraction, larger oscillation amplitude) do not 

lead to appreciable increases in tension in these devices, thereby lending validation 

to the claim that the triangular cantilever cannot sustain much in-plane strain. In 

contrast, drumheads experience large frequency shifts as the optical drive power is 

increased (Supplementary Figure A.8) due to the device and substrate heating. The 

insensitivity of the triangular cantilever frequency to optical drive power is attractive 

for force and mass sensing, since small changes to the resonator environment due to 

pump laser noise and other sources do not cause undesirable changes in the 

frequency. At higher drive powers (above 120 μW), we see irreversible changes, with 
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𝑓0 increasing and the amplitude decreasing. Post-measurement SEM imaging reveals 

that devices driven past the reversible regime suffered from structural deformation 

such as out-of-plane buckling and kinking, leading to a shorter cantilever, smaller 

reflective surface area, and, consequently, the observed increase in resonance 

frequency and decrease in transduction sensitivity (Supplementary Figure A.4). 

4.4  Discussion  

The amount of pre-tension present in the shaped devices relative to the drumheads 

offers insight into the observed decrease in damping seen in all FIB cut geometries. 

Previous work(66) has identified local strain coupling to surface defects as the most 

likely source of damping in fully clamped graphene drumheads. Of the geometries 

considered here, the triangular cantilever geometry has the lowest tension and thus 

we would expect it to have the lowest strain-induced dissipation, consistent with our 

measurements. Similar investigations of low-tension(84) or minimally clamped(67) 

graphene mechanical resonators have also observed relatively high quality factors 

and low damping, which agrees with our result. Thus, strain reduction in devices 

could be a possible route towards high quality factor, ultra-sensitive graphene 

devices. 
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The triangular cantilevers we present here operate in a unique mechanical regime 

characterized by small mass (0.6 fg), low frequency (several MHz), large amplitude 

response, and high quality factors (up to 849). This regime offers the potential for 

exceptional mass and force sensitivity. For example, the theoretical minimum 

detectable mass(15) for our most sensitive device is 30 zg, given by 𝛿𝑀𝑚𝑖𝑛 ≈

𝑏

𝜋𝑓0
10𝐷𝑅/20, where 𝐷𝑅 is the minimum dynamic range and 𝑚𝑒𝑓𝑓 is the effective mass, 

not taking additional contaminant mass introduced during the fabrication process 

into account(81). This value could be significantly improved through use of a higher 

dynamic range optical or electronic transduction technique(20, 67, 81). We estimate 

the minimum theoretical detectable force(94) of ~14 aN/√Hz , given by 𝑑𝐹𝑚𝑖𝑛 =

√8𝜋𝑘𝑏𝑇𝑚𝑒𝑓𝑓𝑓0/𝑄 for the most sensitive device measured. In contrast to drumheads, 

which have a force sensitivity of several hundred aN/√Hz for all sizes (66), we see a 

strong dependence on the device geometry. We compare the triangular cantilevers to 

the drumheads, beams, and crosses (Figure 4.6) and observe a factor of ~10 

enhancement to the force sensitivity, corresponding to a reduction of ~100 in the 

 

Figure 4.6: Role of geometry on the minimum detectable force of graphene nanomechanical 

resonators. Triangular cantilevers displayed the lowest minimum detectable force of all measured 

devices, with a value of ~22 aN/√Hz. For context, the characteristic force sensitivity (~200 aN/√Hz) 

for a high-quality factor graphene drumhead(66) is indicated in red.  
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mechanical damping. These triangular cantilevers, along with the recently reported 

lithographically patterned H resonator, constitute the highest reported force 

sensitivities for room temperature graphene mechanical resonators(67). It is 

noteworthy that both of these devices utilize patterned, low-tension graphene. The 

FIB milling technique presented here offers an excellent method to further explore 

the geometric dependence of the force sensitivity, since it allows for rapid 

prototyping and characterization of desired device architectures. 

4.5 Conclusion 

In this work, we use FIB milling to efficiently fabricate suspended graphene 

structures into a wide variety of novel geometries. All shaped geometries exhibited a 

decrease in mechanical damping relative to the drumheads. Furthermore, we find 

that cantilever-style structures display additional sought-after attributes including 

easily accessible non-linear behavior, large transduction response, high-𝑄, and state-

of-the-art force sensitivities, while also operating in the previously inaccessible low-

tension regime. Importantly, this result was achieved strictly though simple 

geometric shape tuning of commercial graphene, in the absence of complex 

fabrication techniques or ultra-clean graphene. Our findings indicate a close 

relationship between geometry, tension, and mechanical characteristics: structures 

that support less tension, such as the triangular cantilever, have lower dissipation, 

while structures with concentrated tension, such as the tethered cantilever, exhibit 

strong non-linearity. Thus, our FIB shaping technique offers a prescription to tailor 

key nanomechanical properties of graphene through geometry. In particular, our 

work gives a well-defined, repeatable approach to achieve high-𝑄, low-mass 

graphene devices. Our approach can be easily extended to shape graphene for other 

nanomechanical device applications, such as creating coupled mechanical resonators 

or phononic crystal cavities. It can also readily be applied to shape other 2D materials, 

such as hexagonal boron nitride and molybdenum disulfide, to explore the interplay 

between geometry and optical and electronic properties not present in graphene, 

such as photoluminescence and piezoelectricity.  
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4.6 Bridge 

In this chapter, we developed a new method to engineer the geometry of graphene 

NEMS using FIB milling. This approach allowed us to tailor various mechanical 

properties such as frequencies, mechanical non-linearities, and quality factors. The 

ability to control these key parameters and the shape is an important first step to 

array-based applications of graphene NEMS. In the next chapter, we will use scanning 

optical interferometry to study how the mode-shape can be tuned using the FIB 

milling approach.  
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CHAPTER V 

ENGINEERING THE MODAL SHAPE OF GRAPHENE 

NANOELECTROMECHANICAL SYSTEMS USING FOCUSED 

ION BEAM MILLING 

From D. Miller, A. Blaikie, and B. Carter., B. Alemán, Engineering the Modal Shape of 

Graphene Nanoelectromechanical Systems Using Focused Ion Beam Milling, 2018 

IEEE 13th Nanotechnology Materials and Devices Conference (NMDC). 1-4. (2018). I 

performed the fabrication, experimental measurements, data analysis, and am the 

primary author on the publication. Benjamín Alemán is my supervisor.  

5.1 Introduction 

Controlling the modal shape of a nanoelectromechanical system (NEMS) is vital for 

applications ranging from improved point-mass sensing(32) to high quality-factor 

(𝑄) nanomechanics(34). Mechanical structures like trampolines and tapered beams 

in silicon-nitride have attracted increasing interest lately due to possessing an 

extremely high 𝑄(35). Graphene NEMS(20) promise to merge the benefits of an 

engineered mode shape with graphene’s extraordinary strength and low mass, but 

obtaining device shapes other than simple circular or square drumheads or beams 

has been a challenge. However, even a modest degree of shaping can improve device 

characteristics. H-beams, for example, can have a dramatically higher Q(67). Standard 

nanofabrication techniques, such as reactive ion etching and critical point drying, 

have low yields for high-aspect ratio graphene resonators, making it difficult to 

rapidly prototype appealing device geometries, such as trampolines. Our group 

recently demonstrated a simple method to achieve arbitrary geometries in graphene 

NEMS using focused ion beam (FIB) milling(120), which requires only commercially 

available pre-suspended graphene drumheads.  

 



 57 

Continuum membrane mechanics predicts the dynamic mode shapes of these 

geometries, but the models cannot easily capture the effects of surface defects (e.g. 

wrinkles, folds, ripples), edge effects, and anisotropic strain(79). Therefore, a direct 

experimental test of the mode shapes is needed to assess the ability to engineer mode 

shape in graphene NEMS. 

 

Here, we fabricate and characterize graphene NEMS with several novel geometries 

including straight beams, tapered beams, and trampolines. We drive the devices 

electrostatically and measure the mode shapes with scanning interferometry and find 

that these shapes agree well with the predictions of finite element modeling (FEA) of 

thin membranes. We measure the resonance frequencies and quality factors for 

simple drumheads as well as trampolines and find that trampolines display 

moderately increased frequencies. Our work here demonstrates that FIB milling can 

be used to obtain well-defined mode shapes in a graphene NEMS and improve quality 

factors. 

5.2 Methods 

The engineered geometries are cut out of a circular graphene drumhead template 

(Figure 5.2a). We fabricate the initial graphene drumhead resonators over holes 

etched in SiO2 on Si++. The graphene is placed over the holes using a standard dry-

transfer technique(74) and is contacted to a Ti/Pt electrode for electrostatic 

actuation. We shape the template resonators using a single-pass focused ion beam 

milling (FIB) approach optimized for cutting pre-suspended graphene(120). SEM and 

FIB were performed in a FEI Helios dual-beam system, which used Ga+ ions. Typical 

milling parameters are a 1 ms dwell time, 1.1 pA of beam current, and an accelerating 

voltage of 30 kV. Milling time per device is ~1 minute. 

 

The graphene resonators are actuated by applying an AC gate voltage (VAC) between 

the resonator and the Si++ and the device. A DC gate voltage (VDC) is used to increase 

the actuation amplitude and tune the resonance frequency(20). We keep VAC between 

10 mV and 60 mV to remain in the linear-response regime. We measure the 
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mechanical response of the devices using a home-built scanning interferometer and 

lock-in amplification. We focus a 633 nm laser onto the graphene resonators using a 

40x, 0.6 NA objective, yielding a spot-size of ~1 micron. By scanning the laser across 

the device and measuring the on-resonance vibrational amplitude at each point, we 

can reconstruct the mode shape of the nanomechanical devices (Figure 5.1a). 

Measurements are performed at ~10-6 Torr to reduce the effect of gas damping and 

the laser power is kept <10μW to reduce photothermal heating. 

 

 

5.3 Results 

We fabricate graphene NEMS with several novel geometries including trampolines 

(Figure 5.2b), tapered beams (Figure 5.3a), and straight beams (Figure 5.3b) using 

single-pass FIB milling. For the tapered beams and trampolines, annular line cuts are 

used to peel graphene away from the tethers. The regions of collapsed graphene that 

have peeled away from the finished device are visible in Figure 5.2b around the edge 

 

Figure 5.1: Experimental setup. (a) Diagram of experimental setup used for nanoelectromechancial 

measurements. FSM: Fast scanning mirror. PBS: Polarizing beam-splitter. APD: Avalanche photodiode. 

𝜆/4: Quarter waveplate. (b) Frequency response of a tapered beam with VDC = 12 V. We measure a Q 

of ~372 and a resonance frequency of ~13.5 MHz. (c) Frequency tuning curving while varying VDC. The 

resonance frequency sweeps upwards from ~13.5 MHz at VDC = 0 V to ~14.5 MHz at VDC = 15 V. 
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of the hole. For the straight beam, a single-pass serpentine cut oriented away from 

the device removes the graphene. Compared to conventional bulk-milling 

approaches, our single-pass technique releases tension in a more even and controlled 

manner, offering significantly higher-yield for high-aspect ratio structures such as 

trampolines. We achieve near 100% yield for tapered beams and trampolines when 

starting from drumheads without visible tears. Yield for the straight beams is 

significantly lower, likely due to the visible appearance of wrinkles along the length 

of the beam. The tapered structure in both the tapered beams and trampolines 

reduces this wrinkling, which greatly improves the yield.  

 

We first characterize the electromechanical performance by with optical 

interferometry and find resonance frequencies between 10 and 30 MHz depending 

on the specific device geometry. Figure 5.1b. shows a typical mechanical resonance 

peak for a tapered beam with length of 8 μm, measured at VDC = 12 V, with a frequency 

of 13.5 MHz and a Q of ~372. As we sweep VDC from 0 V to 15 V, we find that the 

resonance frequency increases from ~13.5 to ~14.5 MHz due to increased 

electrostatic tension while the Q decreases from ~1000 to ~350, which we attribute 

to increased Joule dissipation(121) (Figure 5.1c). This type of tuning curve is 

characteristic of a graphene NEMS and shows that the FIB milled geometries maintain 

the desirable electromechanical properties of graphene drumheads. Although we 

highlight a tapered beam here, all devices display similar electrostatic properties. 
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We next perform a high-resolution, two-dimensional scan of the measurment laser 

(60×60 points) over the resonators to elucidate their fundamental mode shapes. The 

drumhead (Figure 5.2a) mode appears slightly asymmetric (Figure 5.2c), which is 

often seen for drumhead modes since small imperfections in the clamping can cause 

deviations in the mode shape(79). However, when we remove most of the clamped 

edge to create a trampoline resonator (Figure 5.2b), we observe a square mode shape, 

which is significantly more uniform (Figure 5.2d). The measured trampoline mode 

 

Figure 5.2: Mode shapes for graphene drums and trampolines. (a) SEM image of an 8 μm diameter 

template graphene drumhead. (b) SEM image of an 8 μm diameter graphene trampoline resonator. 

The regions of cut graphene which have been peeled away from the device are clearly visible at the 

edge of the hole. (c) Mode shape for a graphene drumhead. The mode shape is roughly circular but 

somewhat asymmetric. (d) Mode shape for a graphene trampoline. The mode shape is roughly square 

but is significantly more symmetric than the fully-clamped drumhead. (e) FEA simulation of drumhead. 

(f) FEA simulation of a trampoline resonator showing the rectangular mode shape and high amplitude 

throughout the central platform 
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agrees well with FEA simulations, which predicts a simple out-of-plane vibration 

much like a drumhead (Figure 5.2e-f) 

 

We also investigate doubly clamped geometries, such as straight and tapered beams 

(Figure 5.3a). FEA simulations (Figure 5.3e-f) show that tapered beams localize the 

mode shape near the center of the beam significantly more than comparably-sized 

straight beams (Figure 5.3b.). Strain in a tapered beam is also maximal in the center, 

which has been shown to improve the quality factor(34). Indeed, when we compare 

the tapered beam (Figure 5.3c) to the straight beam (Figure 5.3d), we see that the 

mode has significantly higher amplitude at the center of the beam, relative to the 

clamped edges, confirming the result of the FEA modeling. This tapered beam 

 

Figure 5.3: Mode shapes for graphene beams and tapered beams.  (a) SEM image of an 8 μm long 

tapered beam. (b) SEM image of an 8 μm long straight beam. (c) Mode shape of a tapered beam. The 

modal amplitude is concentrated near the middle of the beam. (d) Mode shape of a straight beam. The 

modal amplitude is distributed throughout the beam. (e) FEA simulation of the tapered beam showing 

concentration of modal amplitude near the central taper. (f) FEA simulation of straight beam showing 

significant amplitude throughout the beam. 
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represents the first demonstration of strain-engineering in a graphene NEMS, 

offering the potential for greatly enhanced quality factors. 

Finally, we compare the trampoline geometry to the drumhead geometry to test 

whether the more uniform mode shape translates into different mechanical 

properties. We measure the resonance frequencies (Figure 5.4) for a series of 6 μm 

diameter drumheads (N = 16). Then, we cut several of them into trampolines (N = 6) 

and measure the change to the mechanical properties. The drumheads have 

resonance frequencies around 18.2 MHz, which is typical for a 6 μm graphene 

drumhead(66). When shaped into trampolines, the average resonance frequency 

increases to 23.7 MHz. We see a similar trend towards increased frequencies for the 

10 μm diameter devices, albeit with a smaller sample size. We also observe about a 

five-fold increase in the quality factor for both diameters of device. We attribute the 

increased frequencies and quality factors to the trampoline mode shape seen in 

Figure 5.2b. The trampoline geometry creates regions of high strain in the tethers, 

which has been shown to increase frequencies improve quality factors in high-aspect 

ratio silicon-nitride trampolines(35). 

 

 

Figure 5.4: Resonance frequencies of 6 μm and 10 μm graphene drumheads (N = 16, N = 2)  and 

trampolines (N = 6,  N = 4). The average frequencies for the 6 μm and 10 μm drumheads are 18.1 MHz 

and 13.8 MHz while the trampolines frequencies are slightly higher, at 23.7 MHz and 16.0 MHz. 
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The ability to shape of graphene NEMS offers many potential applications not 

previously possible. For example, fabrication of coupled-resonators, which are 

desirable for mechanical resonator-mediated frequency mixing(7), can be readily 

achieved by leaving a central tether between two FIB-milled beams. Tailoring the 

geometry could also be greatly beneficial to point-mass sensing(32), where the 

frequencies of multiple mechanical modes are tracked simultaneously. The mode-

shape could be engineered in such a way to maximize the frequency shift of the 

various modes due added mass on the resonator. 

 

It should be possible to improve the device throughput by using higher beam currents 

or electron-beam induced etching. We use low ion currents (1.1 pA) in this work to 

maximize the resolution of the FIB milling, limiting our device throughput to ~1 

Device/minute. However, beam currents 106 times larger are possible with modern 

ion sources, offering the potential for fabrication of 106 graphene NEMS/minute with 

high-yield. The single-pass milling procedures we describe could also be used to 

fabricate devices with an electron beam via water-assisted etching(112), reducing the 

need for access to the relatively uncommon dual-beam microscopes.    

5.4 Conclusion 

In this work, we demonstrate the fabrication of graphene NEMS with engineered 

mode shapes, such as tapered beams and trampolines. We visualize the mode shapes 

of these devices and find they tend to be more symmetric and uniform than their non-

engineered counterparts but still agree well with a membrane model. The FIB 

approach used here makes it possible to achieve highly complex geometries. We 

envision that future work could tailor the mode shape to a desired application, such 

as improving the 𝑄 of graphene mechanical resonators or enhanced point-mass 

sensing. 

5.5 Bridge 

In this chapter, we showed that the FIB-shaping approach can be used to precisely 

engineer the mode shape of graphene NEMS. In the next chapter, we will discuss the 

origin of the low 𝑄 in graphene NEMS and discuss ways to improve it. 
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CHAPTER VI 

THE ROLE OF DISSIPATION DILUTION IN DETERMINING 

THE QUALITY FACTOR IN GRAPHENE NEMS 

From an unpublished manuscript by Miller, D., Blaikie, A., Carter, B., Paulose, J., and 

Alemán, B. I performed the fabrication, experimental measurements, data analysis in 

collaboration with Blaikie, A. and am a co-primary author on the publication. 

Benjamín Alemán is my supervisor.  

6.1 Introduction 

In recent years, nanoelectromechanical systems (NEMS) have made significant 

contributions to many areas of science and technology, from the exquisitely precise 

detection of temperature(122), mass(123), local forces(123), and light(46) to the first 

tests of coherent quantum mechanics in macroscopic mechanical systems(8). Future 

uses for NEMS range from quantum bits(92), memories and busses to room-

temperature neutral-particle mass spectroscopy systems(22). These uses demand 

NEMS with an even greater sensitivity and a higher degree of environmental isolation 

for improved classical(7) and quantum coherence(42), which in turn has driven a 

pursuit for NEMS in the extreme limit of low mass and high mechanical quality factor 

(𝑄)(15). 

 

Despite much progress, the quest for both ultralow-mass and high-𝑄 NEMS has fallen 

short. Silicon-nitride (SiN) beams and membranes possess the highest reported 𝑄, 

but these bulk structures also have the highest masses, exceeding nanograms (10−9 

g). On the extreme end of the mass spectrum are low-dimensional NEMS resonators, 

such as suspended carbon nanotubes(17) or graphene sheets(20, 67, 81), which 

possess the lowest-possible mass density (linear or areal) of any material. Graphene 

NEMS have risen in prominence because of their scalability(54, 66), optical 

addressability(71), and large surface-to-volume ratio, making them particularly ideal 

for sensing(59),(46) and optomechanical coupling(55, 56), (47, 48). Unfortunately, 
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graphene NEMS have been hindered by an extremely low room-temperature 𝑄(66), 

typically 𝑄~10 − 100. 

 

Efforts to engineer a higher 𝑄 have been thwarted by a poor theoretical and 

experimental understanding of dissipation in graphene NEMS, but there are hints that 

the 𝑄 of graphene membranes can be described by dissipation dilution theory(34, 35, 

40, 41) (DDT). According to DDT, the 𝑄 of a membrane is expected to increase with 

stress and scale linearly with its lateral size, both which have been observed with 

graphene drumheads(66, 68). In terms of thickness-to-radius aspect ratio(66) 

(ℎ/𝑎~10−4 − 10−5), mechanical stress(62) (𝜎~150 MPa), and elastic modulus(96) 

(𝐸~1 TPa), graphene membranes are also physically similar to bulk, three-

dimensional (3D) systems that are well-described by dissipation dilution (e.g. SiN 

strings and membranes(38, 44, 65)). On the other hand, the DDT for thin plates—the 

most relevant to graphene membranes—assumes a 3D structure, but experimental 

measurements of graphene’s elastic properties (in-plane modulus, bending stiffness) 

often disagree with the 3D model(49). The predicted thickness-dependence(124) of 

the 𝑄 (𝑄 ∝ ℎ−1/2 ) also appears to fail for graphene membranes where 𝑄 should be in 

the range of 10,000 or higher because ℎ~10−10 m. Verifying the DDT predictions have 

been further frustrated by large inconsistencies in the measurements of graphene’s 

elastic properties—which vary with the measurement method(125, 126), the level of 

wrinkling(127), contamination, and strain(128), and device fabriction(129)—and 

because these properties have not been systematically measured and compared to 

the 𝑄. Altogether, it is unknown if DDT can be appropriately applied to graphene 

NEMS. 

 

In this work, we show that the 𝑄 in graphene NEMS devices can be understood with 

a wrinkle-corrected theory of dissipation dilution by measuring strain, modulus, 

bending stiffness, device dimensions, and 𝑄 on all measurable vibrational modes and 

on a large number of graphene NEMS. From this data, we identify that an anomalously 

large bending stiffness caused by out-of-plane wrinkles is likely responsible for the 
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low 𝑄 typically observed in graphene NEMS. Using the elastic engineering principles 

laid out by dissipation dilution, we increase the strain and suppress corrugations 

through Ga+ ion irradiation and achieve record 𝑄 in room-temperature graphene 

NEMS. 

6.2 Results 

To test DDT for graphene NEMS, we first outline the predictions for a circular 

membrane. Dissipation dilution refers to the fundamental observation that thin, 

highly strained NEMS (e.g. strings and membranes) primarily store and lose energy 

through elongation and bending, respectively, so the 𝑄 of these mechanical structures 

can be increased by maximizing the ratio of the elongational energy to the bending 

losses. According to DDT (see Section 2.3), the 𝑄 of a circular membrane is, 

𝑄𝑚𝑛 ≈
𝑄0

𝜆
(1 + 𝜆 × 𝛼𝑚𝑛)−1 (6. 1) 

where  𝛼mn is a constant that depends on the mode number (𝛼01 = 2.404, 𝛼11 =

3.832, etc.) and  𝑄0 is the intrinsic quality factor that arises from internal damping 

mechanisms(36). The increasing nature of the 𝛼mn coefficients captures the higher 

bending losses that accompany the additional curvature of higher order modes. In Eq. 

1,  𝜆 = √
𝜅

𝑇𝑎2 is called the dilution factor, where 𝑎 is the membrane radius and 𝑇 is the 

tension. For a 3D plate of thickness ℎ, the bending stiffness(44) is, 

𝜅𝑝𝑙𝑎𝑡𝑒 =
𝐸ℎ3

12(1 − 𝜈2)
(6. 2) 

where ν is the Poisson’s ratio. For a bilayer graphene membrane, Eq. 6.2 predicts 

𝜅~160 eV. Although 𝑄0 is typically constant for a given material, it has been found to 

scale as 𝑄0 ∝
1

ℎ
 for sufficiently thin NEMS(40, 124) (below ~100 nm), presumably due 

to surface losses. 

 

To test the predictions of dissipation dilution, we fabricate a large array of CVD 

graphene drumhead resonators(74) (see Figure 6.1a) with diameters ranging from 

4.4 μm to 16 μm. We primarily use commercially transferred bilayer graphene 

(Graphenea) due to an improved yield of large-area drumheads. These devices are 
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electrostatically actuated with an AC-gate voltage (𝑉AC) with a DC offset (𝑉DC) and the 

motion is measured with a 633 nm HeNe laser using scanning optical 

interferometry(79), which can resolve the mode shape of the various mechanical 

modes. All measurements were performed at room temperature under a vacuum of 

𝑃 < 10−5 Torr. The laser power is kept low (typically less than 30 μW) to minimize 

the effects of photothermal heating and laser induced back-action(48), which can 

artificially modify the 𝑄. Resonance frequencies and 𝑄 are obtained by fitting the 

characteristic amplitude frequency response curves around 𝑉DC = 0 V, where Joule 

losses(130) are minimized.  

 

In order to test the dependence of 𝑄 on the quantity 𝑇𝑎2, we measure the device radii 

𝑎 from high resolution scanning electron images (Figure 6.1b) and the stress from the 

characteristic frequency-gate voltage dispersion curve, 𝑓0(𝑉DC) (Figure 6.1c). We use 

a continuum mechanics model(29, 48, 62, 81) to fit 𝑓0(𝑉DC) and obtain the tension 𝑇, 

mass per unit area 𝜌, and in-plane elastic modulus 𝑌 (see Supplementary Figure B.1). 

The parameter uncertainty for smaller diameter devices was large, so in this case we 

obtained 𝑇 from the measured device resonance frequency 𝑓0, 𝜌 from larger devices, 

and the relation for the resonance frequency of a circular membrane(66) 𝑓0 =

2.404

2𝜋𝑎
√

𝑇

𝜌
. We also check the self-consistency of 𝑇 measured from fitting and 𝑓0 (see 

Supplementary Figure B.1). Values of 𝜌  range between 9 − 11𝜌g (where 𝜌g is the 

intrinsic mass density of monolayer graphene), which is consistent with bilayer 

graphene with typical amounts of mass contamination. Values of 𝑇 vary between 10 

and 100 mN m-1. We find that the devices have a modulus of 𝑌1~80 N m-1, which is 

consistent with previous work(62, 131) but much lower than the predicted by the 

bulk modulus of bilayer graphene, ℎ𝐸graphite~670 N m-1 (see Supplementary Figure 

B.1) assuming ℎ = 0.67 nm for bilayer graphene. 
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Broadly, the quality factors of our graphene NEMS devices display a size-and-stress 

trend indicative of dissipation dilution. First, we observe a size-dependent quality 

factor, ranging from 𝑄~400 for 4.4 μm diameter drumheads to 𝑄~1600 for the 

largest 16.6 μm diameter devices, in accord with previous work on graphene 

membranes(65, 66) (see see Supplementary Figure B.1). Next, we analyze the unified 

contributions of size and strain together. Figure 6.1d shows the fundamental 

drumhead mode quality factor plotted against the elastic energy parameter, 𝑇𝑎2. 

Despite the significant stress variability within a given diameter, we observe a clear 

 

 

Figure 6.1: Characterization of graphene drumhead dataset. (a) Diagram of a graphene NEMS device. 

(b) Scanning electron microscope image of two 11.6 μm suspended graphene drumheads. (scale = 10 

μm). (c) Resonance frequency of a 11.6 μm bilayer graphene drumhead as the gate voltage is swept 

from −6 V to 6 V. The black line is the fit to the data which gives mechanical parameters of 𝑇 = .08 

N/m,𝜌 = 10.05 𝜌1𝐿 , and 𝑌 = 115.62 N m-1. (d) Quality factors for the five different diameters. (d) Q vs. 

elongational energy parameter for drumheads of various diameters. The average measured mass 

density of 9.65 𝜌𝑔 for 11.6 μm drumheads was used along with 𝑓0 to estimate 𝑇 to within ~10% for all 

devices. 
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agreement with the theoretical scaling of 𝑄 ≈ 𝑄0√
𝑇𝑎2

𝜅
 when 𝜆 ≪ 1. Our data agrees 

with this DDT scaling over two orders of magnitude in the quantity 𝑇𝑎2, in contrast 

to previous tests size dependence alone(66), which only spanned a factor of five in 

membrane radius. The size and stress dependence of the 𝑄 provides evidence that 

these previous results regarding the strain and size-dependent 𝑄 in 2D NEMS arise 

from dissipation dilution, rather than a frequency or area dependent damping 

mechanisms(36, 132), since higher frequencies due to strain lead to a higher 𝑄 while 

those due to a smaller size lead to a smaller 𝑄.  

 

 

 

Figure 6.2: Modal dependence of the quality factor. (a) Predicted 𝑄mn relative to the intrinsic quality 

factor 𝑄01 versus the dilution factor 𝜆. (b). Amplitude-frequency response spectra and corresponding 

mode shapes for the first 5 modes of an 11.6 μm device. (c) 
𝑄11̅̅ ̅̅ ̅

𝑄01
 for several different diameter 

drumheads. We average the 𝑄 of the degenerate 𝑈11 mode to obtain 𝑄11
̅̅ ̅̅ ̅. (d) 𝑄 as a function of mode 

number for an 11.6 μm diameter device. Fitting yields 𝑄0 = 70.6, 𝜆 = 0.0627, 𝜅 = 38.8 keV. (e) 𝑄0 and 

𝜆 derived from the fit shown in d for a number of 11.6 μm diameter drumheads. (f) Logarithmic 

histogram of measured 𝜅 values for 11.6 μm and 16.6 μm diameter drumheads. 
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A hallmark of dissipation dilution is the mode-dependence(39, 44, 65) of 𝑄, which, 

according to Eq. 6.1, can be cast into a 𝑄0-independent ratio of the 𝑄 of any mode to 

the fundamental: 

 𝑄mn

𝑄01
=

(1 + 𝜆 × (𝛼01)2)

(1 + 𝜆 × (𝛼mn)2)
 

(6.3) 

𝑄 is expected to decrease due to the increased curvature (e.g. ∇2𝑈mn) of the antinodes 

in the higher order modes(65). However, as 𝜆 decreases, the curvature at the clamped 

edge (to satisfy the boundary condition ∇𝑈mn(𝑟 = 𝑎) = 0) becomes the dominant 

curvature term, making the quality factor across modes increasingly uniform (Figure 

6.2a). To test this trend in graphene NEMS, we first measure the amplitude spectrum 

(Figure 6.2b) and then identify the first several modes using scanning optical 

interferometry(79), as seen in Figure 6.2b inset. With the modes identified, we 

calculate 𝑄11
̅̅ ̅̅̅/𝑄10, where 𝑄11

̅̅ ̅̅̅ is the average 𝑄 of the degenerate pair of 𝑈11 modes, for 

9 μm, 11.6 μm, and 16.6 μm diameter drumheads (Figure 6.2c). We do not look at 

𝑄21/𝑄10 because it is difficult to unambiguously identify the higher frequency 𝑈21 

mode in the 9 μm devices. From this, we see that 𝑄11
̅̅ ̅̅̅/𝑄10 increases with diameter, 

from a median value of 0.66 for 9 μm diameter drumheads to 0.79 for 16.6 μm 

drumheads, which corresponds to values of 𝜆 of 0.087 and 0.036, respectively. Similar 

results have been seen in SiN strings and membranes(65), however, these values of 𝜆 

are significantly larger than in a typical SiN membrane(44), where 𝜆~ 10−4 − 10−3 

and the 𝑄 does not begin to decrease until much higher mode numbers.  

 

A more accurate measurement of 𝜆 and 𝑄0 can be obtained by fitting the 𝑄 vs. mode 

number to Eq. 6.1 for the first 5 drumhead modes, which we do for a smaller sub-set 

of the 11.6 μm diameter drumheads. An example of this fit for the same device as 

shown in Figure 6.2b. The range of measured values for 𝜆 and 𝑄0 is shown in the box-

and-whisker plots in Figure 6.2e. We find a median value of  𝜆~.053, consistent to the 

𝜆 obtained by taking the ratio 𝑄11
̅̅ ̅̅̅/𝑄10. We also measure 𝑄0 between 10 and 80 with 

a median value of 𝑄0 = 47.6. This is in line with an extrapolation of the thickness-

dependent quality factor seen in SiN strings(39, 124), where 𝑄0~6900
ℎ

100 nm
. This 
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intrinsic loss is thought to arise from surface losses that are ubiquitous in thin 

NEMS(124) and is likely similar across various materials. Taking the bilayer graphene 

thickness to be . 67 nm, we expect 𝑄0~47, in excellent agreement with our 

measurements. 

 

We separately fit the first 5 drumhead modes to obtain 𝜅 using the measured value of 

𝑇 and 𝑎. We find 𝜅 falls between ~5 − 75 keV with a median value of 𝜅1~26,000 eV 

(see Figure 6.2e). This value is significantly larger than theoretical predictions with 

the 3D plate model (Eq. 6.2) predicting 𝜅plate ≈ 160 eV and the phonon spectrum of 

graphite(129) predicting 𝜅 ≈ 3 eV. A similarly large value of 𝜅~103 − 104 has been 

observed in CVD graphene cantilevers(126) using non-contact methods. Given the 

measured values of 𝑇 and 𝑄0, an abnormally large value of 𝜅  appears to be 

responsible for the low 𝑄 observed in graphene NEMS. Given that 𝑄0 is roughly in-

line with that expected for an atomically thin-NEMS with surface losses, reducing 𝜅 is 

imperative for increasing the 𝑄 in graphene NEMS. 



 72 

 

Large-scale wrinkles and corrugations(126, 133) present in suspended 2D sheets can 

explain the anomalously high values of 𝜅 that contribute to lower quality factors. Out-

of-plane wrinkles and corrugations will modify the elastic properties (𝜅 and 𝑌) of 

bare two-dimensional (2D) sheets(127), like graphene. In particular,  

𝜅eff = 𝛽𝜅 × √𝜅int𝑌int〈𝑧eff
2〉 (6. 4) 

𝑌eff = 𝛽𝑌 × √
𝑌int𝜅int

〈𝑧eff
2〉

(6. 5) 

where 𝜅int and 𝑌int = 𝐸intℎ are the intrinsic bending stiffness and in-plane modulus, 

respectively, and 𝑧𝑅𝑀𝑆 = √〈𝑧eff
2 〉 is the RMS height profile of the wrinkled membrane. 

𝛽𝜅 𝑎𝑛𝑑 𝛽𝑌 in Eq. 6.4 and Eq. 6.5 are small corrections(127) to the expected to be of 

order 1. We directly measure the 𝑧𝑅𝑀𝑆 using atomic force microscopy (AFM) and find 

an 𝑧𝑅𝑀𝑆~4.72 nm for the bilayer graphene membranes (Figure 6.3a). Unlike in other 

 

 

Figure 6.3: AFM images and RMS roughness of 11.6 μm diameter FIB irradiated drumheads. (a) AFM 

image of a non-irradiated bilayer graphene drumhead. (scale = 1 μm). (b) RMS roughness values at 

various irradiation doses. Each data point represents the RMS roughness value from 16 μm2 section of 

a separate drumhead. The black arrows indicate values corresponding to the scans shown in a and c. 

(c) AFM image of a bilayer graphene drumhead irradiated at 4.8 μC/cm2. (scale = 1 μm).  
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work, we use extremely low indentation forces of 1 nN to not flatten the surface 

during AFM imaging(134, 135). Using the known values of 𝐸int = 1 TPa, ℎ = .667 nm, 

and the bulk value of 𝜅1,int ≈ 160 eV, Eq. 3 and Eq. 4 predict 𝜅eff ~5 keV and 𝑌eff ~25 

N m-1. These values differ significantly from theoretical bulk values and are much 

closer to the values we measure in this work (𝜅1 ≈ 26,000 eV and 𝐸2𝐷 ≈ 90 N m-1), 

suggesting that wrinkles play a major role in determining the mechanical properties 

of graphene NEMS and must be taken into account when describing the 𝑄 with 

dissipation dilution. 

 

The presence of wrinkles will increase the bending stiffness, thereby decreasing 𝑄 as 

predicted by DDT. By removing these wrinkles, it should be possible to achieve higher 

quality factors in graphene NEMS, with a predicted scaling of 𝑄 ∝
1

𝑍𝑟𝑚𝑠
. To test this 

effect, we use 30 kV Ga+ FIB irradiation to flatten a set of 11.6 μm diameter 

drumheads(128). We find 𝑧𝑅𝑀𝑆 decreases monotonically with FIB dose (Figure 6.3b), 

reaching a value of 𝑧𝑅𝑀𝑆~1 nm at 9.4 μC/μm2. The reduction in wrinkles is visible in 

AFM images from a non-irradiated drum (Figure 6.3a) and one irradiated at 4.77 

μC/cm2 (Figure 6.3c). To infer 𝑧𝑅𝑀𝑆 with various FIB doses, we fit 𝑧𝑅𝑀𝑆(𝐷) to a 

heuristic function,  

𝑧𝑅𝑀𝑆(𝐷) =
𝑧𝑅𝑀𝑆(0)

(1 − 𝐷𝛾)
(6. 6) 

where 𝐷 is the dose in μC/cm2 and find 𝑧𝑅𝑀𝑆(0) = 4.72 nm and 𝛾 = .45 (black dashed 

line in Figure 6.3c). We do not determine the ultimate limit of how small 𝑧𝑅𝑀𝑆 can be 

made with FIB irradiation; however, perfectly flat 2D materials are expected to be 

thermodynamically unstable(136) so it is likely impossible to reach a perfectly flat 

state and recover the intrinsic bending stiffness. We attribute the reduced wrinkling 

to a reduction of the device area due to FIB-induced knock-out damage(131).  
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In addition to the reduced wrinkling, we also measure significantly modified elastic 

properties for the FIB irradiated devices. In separate set of FIB irradiation 

experiments on 11.6 μm drumheads with a dose ranging from 0.2 − 11.8 μC/μm2, we 

also find that the tension increases super-linearly, from ~.05 N/m to 1.5 N/m (Figure 

6.4a), leading to resonance frequencies of 20 − 30 MHz, 5 − 6 higher than the non-

irradiated drumheads. We also find that that Y increases by about a factor of ~3 

(Figure 6.4b) from ~90 N/m to ~250 N m-1 at a dose of 3.9 μC/μm2, consistent with a 

reduction in wrinkles. We cannot accurately measure Y for the highest dose devices 

but we expect it to be closer to the theoretical value for bilayer graphene of 670 N/m. 

A large increase in the elastic modulus through defect creation have been observed  

in previous work(135), however, this was not associated with a higher strain. This 

difference might arise from a different defect type due to the irradiation method (5 

 

 

Figure 6.4: Effect of FIB irradiation on the mechanical properties of 11.6 μm diameter drumheads. (a) 

Diagram of the FIB irradiation process. (b) 𝑇 vs. dose. For the 11.8 μC/cm2, we estimate 𝑇 from the 

resonace frequency rather than fitting 𝑓0(𝑉𝐷𝐶). (c) 𝑌 vs. dose. The black line in b-c indicates the average 

value for non-irradiated drumheads of the same diameter. (d) Amplitude-frequency response curve 

used to extract the highest quality factor, where 𝑄 = 15,000. (e) 𝑄 vs. 𝑓0 for the 4 different doses. The 

black error bars shows the mean and standard deviation of the non-irradiated 11.6 μm devices. (f) 

𝑄11
̅̅ ̅̅ ̅/𝑄10 vs. FIB dose with the black line again indicating the value for non-irradiated 11.6 μm diameter 

drumheads. 



 75 

kV Ar+ vs. 30 kV Ga+) or different measurement methods (Raman vs. resonance 

frequency). In other studies however, defects have been associated with higher 

tension(137), necessitating further evaluation of the effect of irradiation on the 

mechanical properties of graphene membranes. 

 

We see a dramatic increase in the quality factor for the irradiated drumheads. Q01 

increases by a factor of ~15 − 20, from Q~700 for non-irradiated drumheads to 

nearly Q~15,000 at 11.8 μC/μm2 (Figure 6.4d-e),. We plot the frequency response for 

our highest-Q device in Figure 6.4d, which we fit to have Q = 14695, which is the 

highest reported quality factor in graphene NEMS at room-temperature to date. This 

large increase in the Q is consistent with DDT given reduced wrinkling and larger 

tension. Although we are unable to directly measure κ due to the higher frequencies 

(and thus fewer measurable modes) of the irradiated devices, combining Eq. 6.4and 

Eq. 6.6 gives the expected bending stiffness as a function of the FIB dose, 

κ(D) =
κ(0)

(1 − Dγ)
(6. 7) 

where, κ(0)~26000 eV is the bending stiffness with no FIB irradiation. For 11.8 

μC/μm2, we expect κ1(D)~7000 eV, giving a value of λ~ .005 with the measured 

tension of 1.5 N/m. With this and Q0~47, Eq. 6.1 predicts Q~9700, which is close to 

our measured values, especially considering the variability in the measured values of 

Q0 and κ(0). We also find that the ratio Q11
̅̅ ̅̅ ̅/Q01 increases with the FIB dose (Figure 

6.4f), reaching near unity of the highest dose, consistent with a larger value of λ.  

 

 

Figure 6.5: All measured FIB and non-FIB devices with a wrinkle-corrected dilution factor. The blue 

line is Eq. 6.1 with 𝑄0 = 47.3. 
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Our combined measurements of non-irradiated graphene drumheads of various 

diameters and irradiated drumheads is consistent with dissipation dilution with a 

wrinkle corrected value of κ1 that is orders of magnitude higher than expected for 

bare graphene drumheads. 

The wrinkle-corrected dilution factor is, 

λwr = √βκ(κintYint)
1

2√
zrms

Ta2
(6. 8)   

Although the exact value of the proportionality constant likely depends on the nature 

of the exact nature of the wrinkles, it can be determined from Eq. 6.4. With 

κeff~26000 eV, κint = 160 eV, and Yint~670 N/m, we find a scaling constant of βκ =

6.73. We plot Q vs. the calculated λwr with a dose dependent zrms(D) for all devices in 

Figure 6.5 and find excellent agreement with Eq. 6.8 across nearly three orders of 

magnitude using the measured value of Q0 = 47.3. 

6.3 Discussion 

Overall, our results indicate that the origin of the low 𝑄 in graphene NEMS seems to 

originate from similar microscopic loss mechanisms as other 2D NEMS, however, the 

wrinkled nature of the sheets enhances the bending losses and lowers the 𝑄. These 

results could also help explain the temperature-dependence of the 𝑄 in cryogenically 

cooled graphene NEMS(54, 62, 81). As graphene is cooled, both tension and the 

measured in-plane modulus are observed to increase(62) simultaneous to a large 

increase in the 𝑄, which can reach values of 104 at 4 K(54, 81), an improvement of 

102. This is in contrast to SiN where the 𝑄 only increases by a factor of ~10 even when 

cooled to 10 mK(40). Taken in the context of this work, the cooling increases tension 

and reduces wrinkles, which increases 𝑌eff and reduces 𝜅eff, thus leading to higher 

quality factors. Additionally, cooling will likely decrease 𝑄0 by a similar value as in 

SiN(138), assuming the underlying damping mechanism is the same 

 

It is likely that more aggressive shape and strain engineering approaches would lead 

to even more impressive quality factors than FIB irradiation alone. For example, 
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patterning a phononic shield(34, 40) around the graphene NEMS would suppress the 

dominant edge bending, leading to a modified expression for the quality factor(34), 

𝑄mn~𝑄0/(𝜆2𝛼mn). Using the estimated values for the bending stiffness and tension 

for the Ga+ irradiated graphene drums, this expression predicts a 𝑄 > 106 and 

𝑓 × 𝑄 = 1013, potentially allowing for room-temperature quantum optomechanics 

with atomically-thin materials(35) or photothermal cooling(48) of a graphene sheet 

from room temperature to the quantum ground state. Furthermore, our devices 

operate well below the experimentally measured tensile strength of 50 N/m in 

monolayer graphene graphene(139) and are significantly smaller than the largest 

diameter membranes fabricated(66). By fabricating large area membranes near the 

tensile limit, quality factors of 𝑄 > 109 could be readily achieved, matching or 

exceeding the 𝑄 in SiN NEMS(34). Furthermore, these findings can be readily applied 

to other resonators made from exfoliated graphene(20) or other 2D materials(140) 

such as MoS2, which share similar aspect ratios and mechanical parameters, but 

possess other desirable optical and electronic properties. 

6.4 Conclusion 

In conclusion, we have shown that a general theory of dissipation dilution broadly 

describes the observed quality factors in terms, of stress, size, and mode number. By 

fitting the quality factors of higher order drumhead modes and comparing the stress, 

we determined a value for the bending stiffness in tension graphene drumheads. This 

bending stiffness was found to be three orders of magnitude larger than predicted 

from a 3D plate model, but can be explained by corrugations, and is likely responsible 

for the observed low 𝑄 in graphene NEMS. Guided by this knowledge, we report 

record 𝑄 for room temperature graphene NEMS. This high 𝑄 and ultra-low mass 

resonator could open the door to extremely-sensitive force and mass sensing or 

studies of quantum optomechanics(42, 48) in the two-dimensional regime.  

6.5 Bridge 

In this chapter, we presented strong evidence that the 𝑄 in graphene NEMS is 

governed by dissipation dilution. By adding stress and reducing static wrinkling, we 

can increase the 𝑄 by a factor of 20, reaching values as high as 𝑄~15000. This work 
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lays out the groundwork for achieving high-𝑄 in graphene NEMS, one of the two key 

requisites for arrays of NEMS. In the next section, we will begin tackling the second 

challenge use of large-scale NEMS arrays, namely efficient actuation and control 

methods. 
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CHAPTER VII 

SPATIALLY RESOLVED OPTICAL EXCITATION OF 

MECHANICAL MODES IN GRAPHENE NEMS 

From Miller, D. & Alemán, B. Spatially resolved optical excitation of mechanical modes 

in graphene NEMS. Appl. Phys. Lett. 115, 193102 (2019). I performed the fabrication, 

experimental measurements, data analysis, and am the primary author on the 

publication. Benjamín Alemán is my supervisor.  

7.1 Introduction 

Nanoelectromechanical systems (NEMS) made from two-dimensional materials, such 

as graphene(20), h-BN(141), and the transition metal dichalcogenides(142) have 

high promise for nanomechanical force and mass sensing(67, 81, 82) as well as 

studies of fundamental physics at the nanoscale(57). Initial experiments with 2D 

nanomechanical resonators have primarily focused on the dynamics of the 

fundamental mode(54, 66, 80, 81), but advanced NEMS applications are increasingly 

exploiting higher order-mechanical modes(27, 32) and the coupling between these 

modes(29). For example, by simultaneously tracking several mechanical modes, 

NEMS resonant detectors can both weigh and localize single molecules or individual 

viruses(143), while fine control over multiple modes has been used for all-mechanical 

phonon side-band cooling(29). 

Future advances in NEMS multimodal applications demand that the shape of the 

mechanical modes be precisely known and, simultaneously, that any mode of interest 

can be efficiently and selectively actuated. Several high-resolution imaging methods, 

including scanning optical interferometery(79) and atomic force microscopy(89), 

have already been used to map the mechanical mode shape of 2D NEMS. The 

fundamental mode and some higher-order modes of 2D NEMS are routinely accessed, 

but the efficient, selective actuation of a given mode remains a challenge. For instance, 

a common means to actuate 2D NEMS is with an electrostatic gate(20, 54, 57, 79–82), 

but simple gating techniques are inherently inefficient at driving higher-order, 
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antisymmetric modes(29) because the gate applies a symmetric, constant-phase 

force density across the entire suspended membrane. Furthermore, electrostatic 

gating cannot be used to actuate insulating materials(141) or freestanding 2D 

drums(85, 120, 144) and gating reduces quality factors(121) due to Joule heating. 

The combination of scanning optical interferometry and optical drive methods(77, 

78) offers an approach to simultaneously image and actuate a 2D NEMS resonator, 

but only if the optical probe and drive force are sufficiently spatially localized. Optical 

drive methods have been used to selectively actuate higher-order modes in bulk 

micromechanical beams because the resulting radiation pressure and photothermal 

bending forces are localized to the immediate vicinity of the laser spot(145). Optical 

driving has also been employed to actuate 2D NEMS with both defocused and focused 

lasers(20, 47, 66, 120, 137, 141, 142, 146). The defocused drive laser, like gating, 

exerts a symmetric force and is therefore inefficient at driving higher-order modes. 

With focused lasers, the ultralow intrinsic heat capacity (mass) and exceptionally 

high thermal conductivity(47) of 2D materials coupled with the small lateral 

dimensions (~2 − 5 μm) of the NEMS structures causes them to thermalize rapidly, 

which could make thermomechanical bending less local. Furthermore, the low optical 

absorption and reflectivity of 2D materials significantly decreases photon pressure, 

which is a local effect when using a focused laser. To date, experiments with focused 

lasers have either used static lasers—which can only measure mechanical spectra—

or co-localized probe and drive lasers(20, 66), which convolve spatially resolved 

motion with actuation and therefore prevent an assessment of the spatial resolution. 

Therefore, it is uncertain if optical driving is sufficiently local in 2D NEMS to enable 

selective mode actuation. 

7.2  Results 

To determine the spatial localization of the optical force of a focused laser on a 2D 

NEMS, we measure the vibrational amplitude of a suspended graphene membrane, 

which is proportional to the driving force, while we scan the position of a focused, 

driving laser across the membrane. By comparing the resulting force images to the 
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mechanical mode shapes obtained via scanning optical interferometry, we find that 

the resolution of optical drive force is comparable to the spot size of the laser, and 

this resolution is sufficient to efficiently and selectively actuate higher-order modes 

of the graphene membrane.  

The graphene NEMS devices studied in this work are few μm diameter 

nanomechanical drumheads (a 3 μm device is pictured in Figure 7.1a).  We fabricate 

the drumheads by suspending single-layer graphene over cavities etched into SiO2 on 

Si using a semi-dry transfer process(74). The devices are actuated using an amplitude 

modulated 445 nm laser(20, 47, 66, 137, 141, 142, 146), and the amplitude and phase 

are measured using an interferometer operating at 532 nm and standard lock-in 

amplifier techniques, similar to previous work(29, 79). Both the 445 nm drive and 

532 nm probe lasers are focused onto the sample using a 40 ×, 0.6 NA objective, 

yielding a spot-size of ~1 μm, and scanned using independent dual-axis galvo mirrors 

and coupled into the same optical path (see Supplementary Figure C.1). A schematic 

of our experimental setup is shown in Figure 3.9. In the following, we present results 

for a 3 μm diameter device, however, we observe similar, reproducible results for 

other devices and across a range of drumhead sizes.  
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We create two types of spatial maps of the membrane: mode maps and force maps. 

To obtain these maps, we first measure the frequency response spectrum of the 

graphene drumheads to find the mechanical resonance of the mode of interest (Figure 

7.1b). Then, we set the driving frequency 𝜈𝑑  below the mode resonance frequency 

𝜈𝑚𝑛, but above the flat amplitude response that occurs at low frequencies. Here, the 

relative change in amplitude and phase with respect to 𝜈𝑚𝑛, which can drift due to 

heating(79), are small but individual modes can still be resolved above the 

background. To obtain the mode map, which measures the membrane’s vibrational 

amplitude at different locations, we fix the position of the drive laser, 𝒓𝒅 = (𝑥𝑑, 𝑦𝑑) 

 

Figure 7.1: Optically driving the fundamental mode. (a) SEM image of a 3 μm graphene drumhead 

suspended over a 300 nm cavity. (b) Fitted (black lines) amplitude and phase response of the 

fundamental mode for a graphene drum. The device is driven at a frequency, 𝜈𝑑 , located below the 

resonance frequency, during acquisition of the spatial maps. The phase offset, 𝜙0 = −84°, of the 

mechanical oscillation is indicated by the horizontal dashed black line. (c) Amplitude and phase 

response maps obtained by scanning the probe laser while holding the drive laser at a fixed location, 

indicated by the white square in 1e. (d) Amplitude and phase response obtained by scanning the drive 

laser while holding the probe laser at a constant position, indicated by the white circle in 1d. (Scale = 

1 micron). (e) Measured amplitude across vertical cross-sectional cuts in 1c-d. The theoretical mode 

shape and the predicted measured mode shape after accounting for the gaussian laser spot, for a 3 μm 

diameter drumhead, are indicated by the red solid and dashed lines, respectively. 
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and scan the probe laser over an area slightly larger than the drumhead, while 

simultaneously measuring both the amplitude and phase at each point of a 40 ×  40 

array, resulting in a 1600 pixel map of the mechanical mode (Figure 7.1c). To obtain 

the force map, we fix the probe laser position, 𝒓𝒑 = (𝑥𝑝, 𝑦𝑝), on an antinode and 

measure the membrane amplitude and phase response for a given mode 𝑈𝑚𝑛, as we 

scan the position 𝒓𝒅 over the membrane. The measured amplitude |𝑎𝑚𝑛(𝒓𝒅)| is 

directly proportional to the drive force |𝐹𝑚𝑛(𝒓𝒅)|. This off-resonant, fixed frequency 

approach allows scan times of ~1 minute, 10 − 100 times faster than obtaining the 

frequency response spectra at each point, and can resolve a spatially varying phase, 

unlike using a phase-locked loop.  

The mode and force maps for the fundamental mode of the device (𝑈01) are shown in 

Figure 7.1c and Figure 7.1d, respectively. The graphene drumhead used to obtain this 

data has a resonance frequency of 15.7 MHz and a quality factor of 𝑄~120. We plot 

cross-sections of the amplitude mode and force maps, indicated by the black dashed 

lines in Figure 7.1c-d, in Figure 7.1e, along with the theoretically predicted mode 

shape. The mode map exhibits a relatively constant phase (Figure 7.1c, bottom) and 

generally matches the expected shape for a circular membrane, including the full 

width. However, the full-width at half-maximum (𝐹𝑊𝐻𝑀𝑝𝑟𝑜𝑏𝑒) of the measured mode 

shape is ~58% that expected for a 3 μm diameter drumhead, potentially to 

imperfections in the atomically-thin membrane(79). The force amplitude map 

resembles the measured mode shape but is dilated at 𝐹𝑊𝐻𝑀 by a factor 𝑊01 ≈  1.4, 

where 𝑊01 =  𝐹𝑊𝐻𝑀𝑑𝑟𝑖𝑣𝑒/𝐹𝑊𝐻𝑀𝑝𝑟𝑜𝑏𝑒  (Figure 7.1d). In contrast to the mode phase 

map, the phase lag is minimized at 𝜙0~ − 45° near the center of the drum and 

increases to 𝜙0~ − 100° towards the edge of the drum. We characterize the rate of 

this phase lag across the cross-section using a parabolic fit, 𝜙0(𝑥𝑑) = 𝜙0(0) + 𝛿01𝑥𝑑
2, 

and find 𝛿01 = −17°/μm (Supplementary Figure C.3). We verify that the difference in 

phase is due to a spatially-varying phase, rather than a change in the resonance 

frequency, by obtaining full frequency-response spectra at various locations on the 

membrane and fitting for 𝜙0 (shown in Supplementary Figure C.2 for a different 3 μm 
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device). Our measurements of the fundamental mode verify that both the drumhead 

amplitude and phase depend on the position of the focused drive laser.  

To further characterize the optical drive force, we examine the horizontal 

polarization of the antisymmetric degenerate 𝑈11 mode, which we label 𝑈11
𝐻. The 

mode map (Figure 7.2a-b) shows a characteristic antisymmetric shape with two lobes 

separated by a nodal line(66, 79), where one lobe oscillates ~180° out of phase with 

the other. The amplitude nearly vanishes on the nodal line and the phase changes 

discontinuously. As with the 𝑈01 mode, we observe that the size of the mode shape, 

Δ𝐴, defined as the distance between the pair of antinodes, is ~72% of the expected 

value. Positioning the probe laser on an antinode, we again find the force map is 

qualitatively similar to the mechanical mode map; it has two lobes separated by a 

nodal line with a location and orientation nearly identical to the mode map. Although 

 

Figure 7.2: Optically driving the higher order modes. (a) Amplitude and phase recovered while 

scanning the probe (left) and drive (right) across the horizontally polarized 𝑈11
𝐻 mode with 𝜈𝑑  set at 

27.68 MHz (scale =  1 micron). (b) Cross-sectional profile of the amplitude for the mode and force 

maps (dashed line in 1a). The theoretical mode shape and predicted measured mode shape are 

indicated by the solid and dashed lines, respectively. (c) Simulated drive force versus 𝑟𝑑  obtained by 

integrating the measured 𝑈11 mode (green dashed line) with the force density model for several values 

of 𝜎 and 𝛼. 
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the phase changes by a ~180° across the nodal line in both the mode and force maps, 

the position-dependence of the phase is quite different for each case. While the mode 

phase changes abruptly by 180°, as expected for oscillations that are perfectly out of 

phase, the force map phase changes continuously at a rate of ~0.3°/nm across the 

nodal line (see Supplementary Figure C.3). Similarly to 𝑈01 the force map for the 𝑈11 

mode is dilated compared to the mode maps, with 𝑊11 = Δ𝐴𝑑𝑟𝑖𝑣𝑒/Δ𝐴𝑝𝑟𝑜𝑏𝑒 ≈  1.28. 

We observe similar results for the vertically polarized 𝑈11
𝑉 mode, which has a 

resonance frequency of 32.23 MHz and is rotated ~90° from  𝑈11
𝑉 (Supplementary 

Figure C.4). 

We now discuss a model that can describe the behavior seen in the force maps and 

can characterize the spatial resolution of the drive force. The amplitude and phase of 

the force exerted on a mode 𝑈𝑚𝑛 when the drive laser is positioned at 𝒓𝒅 is, 

|𝐹𝑚𝑛(𝒓𝒅)|exp(𝑖𝜙𝑚𝑛(𝒓𝒅)) = ∫ 𝑑𝐴 𝑈𝑚𝑛(𝒓)|𝑓(𝒓; 𝒓𝒅)|exp(𝑖𝛽(𝒓; 𝒓𝒅)) (7. 1)

where 𝑈𝑚𝑛(𝒓) is the normalized mechanical mode shape(77, 78, 145), |𝑓(𝒓; 𝒓𝒅)| is 

amplitude of the optical force density, and 𝛽(𝒓; 𝒓𝒅) is the phase of the optical force 

density. We model |𝑓(𝒓; 𝒓𝒅)| as a gaussian distribution of the form |𝑓(𝒓; 𝒓𝒅)| ∝

exp (
−(𝑥−𝑥𝑑)2−(𝑦−𝑦𝑑)2

2σ2 ), where 𝜎 =  𝐹𝑊𝐻𝑀/2.355. A gaussian force distribution 

matches the shape of the focused laser and will approximate any azimuthally 

symmetric force centered at the drive laser position, such as photothermal stress or 

photon pressure. Likewise, the phase lag of the force density 𝛽(𝒓; 𝒓𝒅) will be a 

minimum at 𝒓𝒅, allowing us to expand β(𝒓; 𝒓𝒅) ≈ β0 −
1

2𝛼2
((𝑥 − 𝑥𝑑)2 + (𝑦 − 𝑦𝑑)2) 

around the laser spot, where 𝛼 is a constant that characterizes the rate of phase lag. 

The overall locality of the optomechanical drive force is determined by the spatial 

extent of both the phase and amplitude of the optical force density. 

To infer the localization of the optomechanical drive force, we numerically integrate 

the overlap integral in Eq. 7.1 using the approximate forms of |𝑓(𝒓; 𝒓𝒅)| and β(𝒓; 𝒓𝒅) 

and the theoretical mode shapes for a circular membrane in two-dimensions. We vary 

the values of both 𝛼 and 𝜎 and look for consistency in 𝑊01, 𝑊11, and 𝛿01 between the 
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simulated and experimentally measured amplitude cross-sections of |𝐹𝑚𝑛(𝒓𝒅)|. In 

these calculations, we take the diameter of the mode shape to be 2 μm, which 

corresponds to the average of the mode sizes of the experimentally measured 𝑈01 and 

𝑈11 modes. Figure 7.2c shows the simulated cross sections of the force map for several 

values of 𝜎 and 𝛼. We find that values of 𝜎 and 𝛼 between . 55 μm and . 75 μm best 

match our experimental measurements (see Supplementary Figure C.5), 

corresponding to a FWHM of 1.3 μm to 1.75 μm for |𝑓(𝒓; 𝒓𝒅)|. This simple model can 

also capture the spatially varying phase seen in Figure 7.1d and Figure 7.2a assuming 

a slight asymmetry in the mode-shape, such as the small difference in the amplitudes 

of the two antinodes seen in Figure 7.2b. We note that the force maps in some devices 

display complexity that is not readily captured by this model (see Supplementary 

Figure C.6 for an example), but may potentially be due to various defects in the 

drumhead such as adlayers or grain boundaries(146) which alter the phase response. 

In the future, a more descriptive model will be important for experiments that 

precisely measure the oscillation phase(47). 

Though the above procedure only yields an approximate value for the localization of 

the force density, the stark contrast between the measured force map and that 

predicted from a larger area force density (i.e. 𝜎 >  1 μm) strongly suggests that the 

drive force is localized to a small region centered around the laser spot. This is in 

accord with 1D simulations of the temperature profile arising from a modulated laser 

incident on a graphene drumhead(146). Reducing the laser spot size by using shorter 

wavelengths or higher NA objectives could further enhance the control of the 

optomechanical drive efficiency, especially for smaller drumheads or beams which 

tend to vibrate at high frequencies(147).  
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As further evidence of the local nature of the optical force in 2D NEMS, we 

demonstrate that a focused drive laser can selectively suppress or excite either 

polarization of the 𝑈11 mode. To show this, we position the probe laser at a location 

sensitive to the motion of 𝑈01 and both polarizations of 𝑈11, and then we measure the 

frequency response while the drive laser is positioned at four different locations on 

the membrane, all either on an antinode or node of the orthogonal 𝑈11
𝐻  and 𝑈11

𝑉 

modes (see Figure 7.3). The spectra show that the mode can be excited when the drive 

is placed on an antinode, or suppressed by ~75% when placed on a node. The 

suppression is sensitive to the beam shape and beam positioning—which we did not 

fully optimize—so it may be possible to achieve a much higher degree of mode 

suppression. Suppressing individual modes of a degenerate pair is typically quite 

hard, since they overlap in frequency, making this technique useful for probing the 

motion of a single mechanical polarization(148). Placing the drive laser at the point 

of a mode’s maximum response also reduces the need for high laser powers, which 

can lead to irreversible changes in the device(137). Although we only study the first 

three modes here, this technique could also be used at higher frequencies, where the 

dense spectrum of modes can overlap significantly(149).  

 

Figure 7.3: Frequency response traces with the drive laser at four different locations on the drumhead. 
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7.3 Conclusion 

In summary, we have combined spatially resolved imaging with a force density model 

to infer the spatial resolution of the optical drive in a graphene nanomechanical 

resonator. Despite the fast thermalization, low reflectivity, and micrometer-scale size 

of the graphene resonator, we found that the optical force is localized to an area 

slightly larger than the focused laser spot and can selectively and efficiently actuate 

high-order mechanical modes. The combination of high-spatial-resolution optical 

drive and read-out enables full multimodal control of suspended 2D nanomechanical 

resonators for future NEMS applications. Our high-resolution, all-optical approach 

could be combined with optical beam shaping and spatial light modulation to 

selectively address an arbitrary subset of resonators within large arrays, a feat not 

easily achievable with electrostatic gating, or could serve as a point source of 

propagating mechanical waves for use in 2D nanomechanical circuits(150) and 

waveguides(151). 

7.4 Bridge 

In this chapter, we studied the spatial localization of the optical drive process in 

graphene NEMS and found that it was similar to the laser spot size. By changing the 

position of the drive laser, we can efficiently and selectively excite various mechanical 

modes. Such a technique allows for excellent control of the motion in NEMS arrays. In 

the next section, we will tackle the problem of controlling the resonance frequency in 

graphene NEMS. 
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CHAPTER VIII 

NONVOLATILE REWRITABLE FREQUENCY TUNING OF A 

NANOELECTROMECHANICAL RESONATOR USING 

PHOTOINDUCED DOPING 

From Miller, D. Blaikie, A., and Alemán, B., Non-volatile rewritable frequency tuning 

of a nanoelectromechanical resonator using photoinduced doping, Nano Lett. 

20, 2378-2386 (2020). I performed the fabrication, experimental measurements, 

data analysis, and am the primary author on the publication. Benjamín Alemán is my 

supervisor.  

8.1 Introduction 

Nanoelectromechanical (NEMS) resonators have enabled a broad range of 

technological and scientific applications, including mass(17), charge(91), and 

force(18) sensing, and studies of cavity optomechanics(152), nonlinearity(7), and 

quantum mechanics(92). There is a burgeoning interest to broaden these uses and to 

discover new functionality—similar to the development of electronic circuits—by 

building large-scale NEMS resonator arrays, networks, and circuits. Simple NEMS 

arrays have already impacted areas like infrared imaging(153) and neutral mass 

spectrometry(22) and hold promise as ultralow-power alternatives to traditional 

analog electronics(15) in addition to nanomechanical information technologies like 

memory(154), logic(155), and computing(156, 157). However, these passive arrays 

suffer from random and unpredictable properties due to variations in their individual 

resonator components, variations that arise from fabrication imperfections, 

environmental interactions, and drift. These variations are further exacerbated at the 

small physical dimensions relevant to NEMS, and severely hinder the potential of 

NEMS arrays. 

 

In order to achieve arrays with well-defined and controllable properties, it is 

necessary that the frequency of each individual NEMS resonator be programmable. 
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At the most basic level—like tuning the strings of a guitar or violin—programmability 

requires tuning of the resonance frequency that is at once persistent (i.e. non-

volatile), reversible, repeatable (i.e. can be tuned and cycled many times), and 

scalable to large arrays. At a more practical level, programmability requires that the 

frequency be tuned quickly and over a large frequency range. In addition to 

overcoming the practical challenge of variability, programmable NEMS arrays also 

open many new and exotic opportunities, such as tunable acoustic crystals(150), 

acoustic invisibility and lensing(158), topological metamaterials(159, 160), and 

platforms for neuromorphic computing(161, 162) and for simulating complex 

networks(25). 

 

Numerous NEMS frequency tuning methods(163) have been demonstrated, but in 

terms of programmability, each has significant drawbacks and challenges. Active 

tuning methods, such as electrostatic gating(20) and local heating(164), are 

reversible and can achieve a large tuning range, but they require a continuous, 

separate external force for each NEMS resonator to maintain its tuned frequency (e.g. 

in the case of gating, a separate analog DC source is needed for each resonator). The 

inherent transience of these active methods makes them impractical for 

programmable arrays. Passive methods, which tune the frequency by permanently 

modifying the NEMS structure (e.g. by adding or removing mass(81, 165, 166)), can 

achieve persistent tuning but at the expense of reversibility, speed, and scalability, 

making them unsuitable for programming. Some approaches have successfully 

combined persistence and reversibility, including mass electromigration along 

suspended carbon nanotubes(167) and etching/depositing of mass with a focused 

ion beam(168), but these techniques require electron microscopy, serial in-situ 

nanomanipulation, and dedicated power supplies for each device, which severely 

impedes practicality and scalability. Moreover, these tuning schemes suffer from poor 
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frequency resolution, a limited tuning range (~10%), slow speed, and limited 

cyclability. 

 

Here, we demonstrate a non-volatile and rewritable frequency tuning method for 

graphene-based two-dimensional (2D) NEMS(20, 61, 79, 81, 95, 121). In our 

approach, we use a focused laser and two global electrical contacts to create locally 

photo-ionized defects(169–173) on an individual resonator. After the optical and 

electrostatic fields are removed, the trapped charge created by photo-ionization 

persists and applies spatially localized electrostatic strain to the resonator, thereby 

tensioning the resonator and tuning its frequency. Our approach is robustly 

rewritable over a large tuning range and persistent over many days with no need for 

external power. Moreover, our approach is exceptionally fast, can locally address 

individual resonators, and is scalable to NEMS arrays of arbitrary size. By providing 

a facile means to address the frequency of NEMS resonators, this work lays the 
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groundwork for fully programmable large-scale NEMS lattices, networks, and 

circuits(160, 174). 

8.2 Results 

Our frequency tuning method relies on principles similar to electrostatic gate-tuning 

of graphene NEMS(20, 81). In a typical gate-tunable device, a graphene membrane is 

suspended above a gate electrode to form a mechanically compliant parallel-plate 

capacitor, with a capacitance 𝐶𝑔 that depends on the membrane deflection 𝑧. When 

an external voltage 𝑉𝑔 is applied to the gate, the membrane will experience an 

 

Figure 8.1: Photodoping graphene-based NEMS. (a) Schematic of the phototuning effect in 2D NEMS. 

b) SEM image of a gr/hBN drumhead with venting trenches on the sides. Small multilayer islands of 

hBN are visible on the surface. Scale = 1 μm. (c) SEM image of a graphene drumhead. Scale = 1 μm. (d) 

The frequency tuning sequence is as follows:  1. The device is initially in its intrinsic state with 𝑉𝑔 = 0 

V, 𝑉𝑚𝐶𝑁𝑃 = 0, and resonance frequency 𝑓0; 2. The device is then biased with 𝑉𝑔 = 𝑉𝑑 , tuning the 

resonance frequency to 𝑓0 + Δ𝑓0(𝑉𝑑); 3. Photodoping the device while 𝑉𝑔 = 𝑉𝑑 sets 𝑉𝑚𝐶𝑁𝑃  to 𝑉𝑑  and 

returns the resonance frequency to 𝑓0. 4: With the gate bias off, the device is in its phototuned state 

with a resonance frequency 𝑓𝑉 = 𝑓0 + Δ𝑓0(−𝑉𝑚𝐶𝑁𝑃), where for the ideal device 𝑉𝑚𝐶𝑁𝑃 = 𝑉𝑑; 5. 

Photodoping with 𝑉𝑔 = 0 now returns the device to its initial configuration, with a resonance frequency 

𝑓0.  
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electrostatic force 𝐹 =
1

2

𝑑𝐶𝑔

𝑑𝑧
(𝑉𝑒𝑓𝑓)

2
 where the effective bias is 𝑉𝑒𝑓𝑓 = 𝑉𝑔 − 𝑉𝑚𝐶𝑁𝑃 and 

𝑉𝑚𝐶𝑁𝑃 is the mechanical charge neutrality point, a quantity analogous to graphene’s 

electronic charge neutrality point(86). This force will bend and tension the graphene 

membrane, changing its resonance frequency 𝑓0 by an amount Δ𝑓0. In general, Δ𝑓0 is 

a symmetric function about 𝑉𝑒𝑓𝑓 = 0 where the exact shape and tuning range is 

determined from the geometric and elastic properties of the device(48, 81). For the 

devices used in this work, Δ𝑓0 increases monotonically with |𝑉𝑒𝑓𝑓| at a rate 

determined by the value of |𝑉𝑒𝑓𝑓|. In graphene-based NEMS, 𝑉𝑒𝑓𝑓 is typically offset 

from 𝑉𝑔 by relatively small but non-zero values of 𝑉𝑚𝐶𝑁𝑃. The origin of this non-zero 

𝑉𝑚𝐶𝑁𝑃 has been ascribed to the presence of electrically charged dopants and 

defects(81, 121). If the density of these charged species were controllable, then it 

would be possible to modify 𝑉𝑚𝐶𝑁𝑃 and thus tune 𝑓0, even in the absence of an external 

gate bias (𝑉𝑔 = 0). This previously unexplored tuning mechanism is the basis of our 

technique. 

 

We tune the 𝑉𝑚𝐶𝑁𝑃 of an individual graphene-based NEMS device with spatially 

resolved photodoping(169–173). In previous studies of graphene photodoping, 

graphene is separated from a global gate-electrode by a stack of dielectrics (e.g. hBN 

and SiO2)(171). When a voltage is applied to the gate while a laser is focused onto the 

graphene, the local electronic charge neutrality point of the graphene (i.e. the gate 

bias corresponding to the highest resistivity) changes until it equals the applied gate 

voltage in magnitude, neutralizing the effect of the gate. This photodoping effect is 

attributed to the accumulation of photo-ionized defects trapped near the laser focus. 

Crucially, the trapped charge persists long after the laser and gate are removed, but 

can also be controllably neutralized and re-ionized by subsequent photodoping, 

allowing for intricate, long-lived spatial patterning of charged dopants in the 

heterostructure. In our approach, we exploit photodoping to control 𝑉𝑚𝐶𝑁𝑃 and thus 

tune the resonance frequency of individual graphene membranes. By using a focused, 

scannable laser, a single global gate electrode, and a single shared electrical top 
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contact, we can address spatially separated resonators in arbitrarily large arrays and 

program their resonant frequencies. 

 

We study this tuning method in NEMS membranes made from both CVD-grown 

monolayer graphene and a graphene/hBN heterostructure (gr/hBN). In our device, 

we suspend the 2D sheet over a circular cavity (~4 − 5 μm in diameter) etched into 

SiO2 on top of a degenerately doped silicon gate electrode (see Figure 8.1a-c). Venting 

trenches, visible on the sides of Figure 8.1b-c, are fabricated between the cavities to 

protect the suspended sheets from rupture under vacuum(75). A layer of SiO2 (~300 

nm thick) is left at the bottom of the cavities to prevent shorting and create potential 

charge traps(170). The devices are driven with standard electrostatic actuation 

techniques(20) using the silicon back-gate and a Ti/Pt top contact, and measured 

using an interferometer operating at 633 nm(61, 79). Photodoping is performed with 

a power-stabilized 445 nm diode laser, except where noted otherwise. Both the 

measurement and doping laser are scanned with independent fast steering 

mirrors(71), allowing for the array of devices to be rapidly addressed. Devices are 

measured in vacuum (< 10−5 mTorr) to reduce the effect of air damping, to increase 

the mechanical quality factor (𝑄), and to prevent oxidative damage to the 2D 

membrane. 

 

To set or change the frequency of an individual membrane through photodoping—a 

process we will call phototuning—we apply a bias to a global back-gate (in this case, 

degenerately doped silicon) while focusing a laser onto the individual, suspended 

membrane of interest (see Figure 8.1a,d). Prior to any photodoping (i.e. before the 

laser or bias are turned on) and assuming that 𝑉𝑚𝐶𝑁𝑃 = 0 V in the undoped state, the 

resonator will be at its intrinsic resonance frequency 𝑓0 (step 1). Then, we set the gate 

voltage to 𝑉𝑔 = 𝑉𝑑, so that 𝑉𝑒𝑓𝑓 = 𝑉𝑑, which tensions the membrane and blue shifts 

the resonance frequency (step 2) to 𝑓0 + Δ𝑓0(𝑉𝑑). Here, 𝑉𝑑 represents the 

photodoping voltage setpoint. Next, with the gate still at 𝑉𝑑, we turn on the laser to 

photo-ionize defects and create trapped charge, with the value of 𝑉𝑑 determining the 
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polarity and density of trapped charge. In our devices, the charged defects are likely 

both in the hBN(169, 171) and the oxide(170). The generation of this charge brings 

𝑉𝑚𝐶𝑁𝑃 towards 𝑉𝑑, lowering the effective voltage to 𝑉𝑒𝑓𝑓 = 𝑉𝑑 − 𝑉𝑚𝐶𝑁𝑃 and red 

shifting the resonance frequency. Given enough laser dose, 𝑉𝑚𝐶𝑁𝑃 saturates to 𝑉𝑑, so 

that 𝑉𝑒𝑓𝑓 = 0 and Δ𝑓0(0) = 0. This returns the frequency to 𝑓0 (step 3). After turning 

the laser and bias off, the photo-ionized charges remain, so that 𝑉𝑒𝑓𝑓 = −𝑉𝑚𝐶𝑁𝑃 and 

the frequency blue shifts to 𝑓0 + Δ𝑓0(−𝑉𝑚𝐶𝑁𝑃) (step 4), which is the same as 𝑓0 +

Δ𝑓0(𝑉𝑑) due to the symmetry of Δ𝑓0(𝑉𝑒𝑓𝑓). We denote 𝑓𝑉  as the phototuned frequency 

𝑓0 + Δ𝑓0(−𝑉𝑚𝐶𝑁𝑃) obtained after step 4. Importantly, 𝑓𝑉  persists without an external 

gate bias (i.e. 𝑉𝑔 = 0). Steps 2-4 complete the phototuning “write” function of our 

programming platform. The frequency can be reset back to 𝑓0—or “erased”—by 

zeroing the photodoping setpoint (𝑉𝑑 = 0 V) and illuminating the membrane with the 

laser (step 5). The frequency does not need to be erased to be rewritten to a different 

state. To rewrite, steps 2-4 are repeated with a different photodoping setpoint (𝑉𝑑). 

We note that the description above represents the ideal case of phototuning. For most 

devices we study, the non-photodoped 𝑉𝑚𝐶𝑁𝑃 is slightly offset from zero and 𝑉𝑚𝐶𝑁𝑃 

saturates to a slightly different value than 𝑉𝑑, but neither of these factors affect the 

key properties of the phototuning method. 
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Phototuning creates local charge on the graphene membrane that tensions the 

membrane and shifts its resonance frequency. These photo-ionized charges also 

generate an electrical potential given by 𝑉𝑚𝐶𝑁𝑃 and modulate the gate-dependence of 

amplitude resonance spectra. The effect of 𝑉𝑚𝐶𝑁𝑃 on the membrane is indiscernible 

from an electrostatic gate bias, yet exists in the absence of an external bias. To observe 

these basic effects, we first set the gate to 𝑉𝑑 and raster the laser (at relatively high 

power, ~1 mW/μm2) over the area of the membrane, and then collect spectra. The 

resulting electrostatic frequency tuning spectra for a gr/hBN device in the erased 

state (𝑉𝑑 = 0 V) and two phototuned states (𝑉𝑑 = 15, 30 V) are shown in Figure 8.2a. 

The fundamental mode has the highest contrast, but several higher order modes are 

also resolved; we infer 𝑉𝑚𝐶𝑁𝑃 as the gate bias where the fundamental mode is at its 

minimum frequency. The individual resonance curves collected at 𝑉𝑔 = 0 V for these 

 

Figure 8.2: Phototuning the resonance frequency of a gr/hBN drumhead. (a) Electrostatic frequency 

tuning spectra for a gr/hBN drumhead resonator as it is phototuned from the erased state, i.e. with 

𝑉𝑑 = 0 V (left), to phototuned states with 𝑉𝑑 = 15 V (middle) and 𝑉𝑑 = 30 V (right). The 𝑉𝑚𝐶𝑁𝑃  is 

initially located at ~1 V and shifts to 𝑉𝑚𝐶𝑁𝑃  ~ 28 V after phototuning at 𝑉𝑑 = 30 V. (b) Resonant 

response at 𝑉𝑔 = 0 V for the three different states in (a). 𝑓𝑉 is the center frequency in each of these 

curves. The resonance frequency increases by ~200% and the 𝑄-factor decreases from 135 to 74 

between the 𝑉𝑑 = 0 V and the 𝑉𝑑 = 30 curves. The maximum amplitude has been independently 

normalized to unity for all three resonance curves. 
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same three states are shown in Figure 8.2b; we infer 𝑓𝑉  from these spectra. In the 

erased state, 𝑉𝑚𝐶𝑁𝑃 is offset from zero by ~1 V, which indicates the presence of static 

charged contaminants(81, 121). In the erased state, 𝑓𝑉 = 9.8 MHz (Figure 8.2b, red 

curve) and the resonator quality factor is 𝑄 = 135. In the phototuned states with 𝑉𝑑 =

15 V and 𝑉𝑑 = 30 V, 𝑉𝑚𝐶𝑁𝑃 saturates to ~15.7 V and ~28 V, respectively. Moreover, in 

the tuned states, 𝑓𝑉  has shifted to 17.1 MHz (𝑉𝑑 = 15 V) and 28.1 MHz (𝑉𝑑 = 30 V), 

and the 𝑄 decreases (e.g. to 𝑄 =  74 for 𝑓𝑉 = 28.1 MHz). Although the tuned state with 

𝑓𝑉 = 28.1 MHz differs from the erased state by ~ 200% and 𝑉𝑚𝐶𝑁𝑃 differs by ~27 V 

between these states, the gate-dependence of each mode relative to 𝑉𝑚𝐶𝑁𝑃 doesn’t 

change. Thus, apart from the 𝑉𝑚𝐶𝑁𝑃 shift, the phototuning process does not alter the 

mechanical characteristics of the device in any significant way, in contrast to most 

passive tuning methods(81, 164, 166). Based on the shape of the resonance frequency 

curves (extracted from the peak amplitudes), the force on the membrane due to 

𝑉𝑚𝐶𝑁𝑃 is equivalent to an external gate bias(20, 81). Also, the peak amplitude and 𝑄 

for all modes decreases with |𝑉𝑒𝑓𝑓|, just as it would with an applied electrostatic 

backgate(95). Moreover, for each tuned state, the amplitude of the fundamental mode 

vanishes when |𝑉𝑒𝑓𝑓| ≈ 23.6 V at a frequency of ~23 MHz. The amplitude is expected 

to vanish when the membrane displacement leads to destructive interference(48) in 
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the optical signal, providing further evidence that 𝑉𝑚𝐶𝑁𝑃 is generated by local electric 

charge, charge that physically deflects the membrane. 

To demonstrate the reversibility of 𝑓𝑉  using phototuning, we change 𝑓𝑉  at discrete 

time intervals by varying the doping potential. At the beginning of each interval, we 

phototune the device using a single short, high power laser pulse of ~1 mJ (𝑃~2 mW, 

𝑡 = 0.5 s) at a given 𝑉𝑑 (Figure 8.3a), and then continuously monitor the 𝑓𝑉  by fitting 

the resonance spectra (Figure 8.3b) for the remainder of the interval, ~600 seconds. 

Increasing 𝑉𝑑 stepwise from 0 to 35 V (as seen in Figure 8.3a), 𝑓𝑉  takes on fixed, stable 

values that increase from 7 MHz up to 45 MHz. When we decrease 𝑉𝑑 stepwise back 

to 0 V, 𝑓𝑉  returns to 7 MHz. This data clearly demonstrates that the phototuning of 𝑓𝑉  

is both reversible and bidirectional. The tuning range of 𝑓𝑉  is large, here nearly 550%, 

which is an order of magnitude larger than any previous hybrid tuning method(167, 

 

Figure 8.3: Stability and repeatability of the phototuning process. (a) Setting the frequency in time. A 

combined high-power optical pulse of ~1 mJ and gate voltage 𝑉𝑑  are applied at the times indicated by 

arrows. (b) Resonance spectra taken with 𝑉𝑔 = 0 V immediately after photodoping for the 

corresponding 𝑉𝑑  in a. The amplitude varies due to different transduction and actuation efficiencies at 

the different values of 𝑉𝑒𝑓𝑓 . (c) Stability of 𝑓𝑉 with 𝑉𝑔  =  0 𝑉 after phototuning to 28.77 MHz. After an 

initial jump of 2%, the 𝑓𝑉 decays at a rate of ~0.05%/Hour. The gray band shows the mechanical 

linewidth corresponding to a 𝑄 of 74. (d) Reproducibility of 𝑓𝑉 for 919 complete cycles of phototuning 

with 𝑉𝑑 = 30 V followed by erasure with 𝑉𝑑 = 0 V. The 𝑓𝑉 value falls within a ~0.33 MHz band for both 

states. 
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168). In our measurements, we limited the doping potential to 35 V to avoid damage 

to the mechanical resonators, but larger potentials up to the dielectric breakdown of 

the SiO2 could be used to achieve an even higher degree of tuning.  

 

The phototuned frequency states persists for several days with minimal change. This 

persistence is clear from the steps in Figure 8.3a, which show 𝑓𝑉  is stable for at least 

600 s. To assess the longer-term stability of phototuning, we write 𝑓𝑉  a single time 

and then measure 𝑓𝑉  every hour over the course of 3 days. Figure 8.3c plots the 

fractional change Δ𝑓𝑉/𝑓𝑉 after phototuning 𝑓𝑉  with a doping potential of 30 V. 

Immediately after photodoping, the 𝑓𝑉  of this device blueshifts by 2% over the course 

of 2 hours. This blueshift is only seen in some devices, and the effect could be due to 

the slow thermal relaxation of surface contamination (e.g. PMMA) that follows laser 

heating(62), or possibly to the rearrangement of trapped charge. After this initial 

detuning, the 𝑓𝑉  slowly redshifts at a rate of 0.05%/hour, resulting in a total frequency 

shift only one linewidth after 30 hours. For reference, the mechanical linewidth for 

our devices is ~2% of the resonance frequency (shaded region of Figure 8.3b). The 

slow redshift of 𝑓𝑉  may be ascribed to diffusion and/or recombination of the ionized 

defects, or to the probe laser. To isolate the effect of the probe laser, we set 𝑓𝑉  and 

measure it once after 8 days (see Supplementary Figure D.1). In addition to a small 

amount of detuning, we also observe warping of the electrostatic frequency tuning 

spectrum, suggesting that additional sources of detuning are present, which may 

include the rearrangement of the trapped charge in the oxide or hBN, or strain 

relaxation (e.g. in folds and edge clamping). Detuning driven by thermally-induced 

recombination of the ionized defects(169) could be reduced by operating at cryogenic 

temperatures. Given the time scale of the drift, phototuning feedback would be a 

straightforward means to stabilize the frequency. Nevertheless, the long-lived 

phototuned 𝑓𝑉  state does not require an external power supply or gate bias, in 

contrast to conventional externally biased NEMS resonators. Therefore, phototuning 

can replace DC voltage sources and patterned gate electrodes(150, 174) with the use 
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of a single voltage source and a single scannable laser, making our phototuning 

approach uniquely scalable to arbitrarily large resonator arrays.  

 

The phototuning method can achieve a high degree of frequency tuning repeatability 

and can execute an indefinite number of write/erase cycles with no observable 

change to the mechanical properties of the NEMS device. To test repeatability and 

cycling performance, we erase the frequency state by phototuning with 𝑉𝑑 = 0 V, then 

we write 𝑓𝑉  with 𝑉𝑑 = 30 V. For all writing and erasure steps, the same dose of 1 mJ 

was used. Figure 8.3c shows the results after 919 erase/write cycles. As measured 

from the histogram (right of Figure 8.3d), the average frequencies of erased and 

written states are 𝑓𝑒𝑟𝑎𝑠𝑒 = 11.02 ± 0.12 MHz and 𝑓𝑤𝑟𝑖𝑡𝑒 = 40.16 ± 0.16MHz, which 

yields a writing repeatability of 99.5%. The small uncertainty in the repeatability 

could be inherent to the phototuning process, but could also be caused by sources of 

frequency noise and fluctuations common to 2D NEMS, such as adsorbates, heating, 

and unwrinkling(61). The large frequency separation of the written and erased states 

in Figure 8.3a,c could easily allow a discrete binary logic state(154, 175). 

Alternatively, the frequency states can represent discrete levels for logic or memory 

applications(162, 176), where information is encoded in the frequency of each 

resonator. For example, with the frequency separation (29.14 MHz) and the average 

full-width-half-maximum as the write error (283 kHz) shown in Figure 8.3d, it is 

possible to define over 100 discrete and well-defined logic states. 
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The photodoping rate will ultimately determine the number of devices that can be 

controlled with the phototuning method, or how quickly the state of an individual 

device can be changed. This rate can be inferred from  the dependence of either 𝑓𝑉  or 

𝑉𝑚𝐶𝑁𝑃 on the accumulated dose during the phototuning process (see supplementary 

information), where the accumulated dose is the total optical energy (𝐸 = 𝑃 × 𝑡) 

delivered to the devices at a given power 𝑃 and over a time 𝑡. Figure 8.4a shows a plot 

of 𝑉𝑚𝐶𝑁𝑃(𝐸) (blue, upper) and 𝑓𝑉(𝐸) (orange, lower) for 𝑉𝑑 = 9, and 𝑃~530 μW with 

 

Figure 8.4: Measurement of the photodoping rate. The laser wavelength is 445 nm except in e. (a) Top: 

Example of a single photodoping curve with 𝑉𝑑 = 9 V. The black line is an exponential fit to the data 

with 𝛼 = 243 mJ-1. Bottom: Same data for 𝑓𝑉 . The optical power for the is measurement is 𝑃~530 μW. 

(b) Photodoping curves for Δ𝑉 > 0 in blue (𝛼+ branch) and Δ𝑉 < 0 in red (𝛼− branch) for a typical 

gr/hBN device and a graphene-only device. The laser power is 640 μW and 𝑉𝑑 = ±8 V for all the 

measurements. c) Doping rates for both 𝛼+ (blue squares) and 𝛼− (red circles) for 640 μW, 445 nm 

irradiation for two gr/hBN and three graphene devices. For the 𝛼+ branch of the graphene devices, 

which don’t saturate close to 𝑉𝑑 , we take the initial slope of 𝑉𝑚𝐶𝑁𝑃(𝐸) and divide by 𝑉𝑑  to obtain 𝛼. (d) 

Laser-power dependent doping rate for the 𝛼+ branch of one of the gr/hBN devices in c. The black line 

is a fit to the function 𝛼 = 𝛼0𝑃𝛾 , with 𝛾 = 0.63. (e) Photodoping rates of a gr/hBN device for both the 

𝛼+ (squares) and 𝛼− (circles) branches for different doping laser wavelengths. Data was collected 

using 405 nm, 445 nm, 532 nm, and 633 nm illumination all at 20 μW. For the 532 nm and 633 nm 

laser illumination where photodoping is extremely slow, we use the same linearized doping rate 

defined in c. 
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a 445 nm laser. Both 𝑉𝑚𝐶𝑁𝑃 and 𝑓𝑉  approach steady state saturation values within 

~25 ms, equivalent to a total dose of ~15 μJ. As noted earlier, we find that 𝑉𝑚𝐶𝑁𝑃 does 

not saturate exactly to 𝑉𝑑, but each device has a small but consistent offset, which we 

denote 𝛿𝑉𝑚𝐶𝑁𝑃. To obtain the doping rate 𝛼 (measured in units of inverse energy, mJ-

1), we model 𝑉𝑚𝐶𝑁𝑃(𝐸) with a saturation function of the form, 

𝑉𝑚𝐶𝑁𝑃(𝐸) = Δ𝑉(1 − 𝑒−𝛼𝐸) + 𝑉0 (8. 1) 

where Δ𝑉 ≈ 𝑉𝑑 − 𝑉0 + 𝛿𝑉𝑚𝐶𝑁𝑃 and 𝑉0 is the initial 𝑉𝑚𝐶𝑁𝑃 before additional 

photodoping. Prior to each rate measurement, the device is photodoped at high 

power with 𝑉𝑑 = 0 V, which initializes 𝑉0 to 𝛿𝑉𝑚𝑁𝐶𝑃. The black trace in the upper 

plot of Figure 8.4a is the fit for 𝑉𝑚𝐶𝑁𝑃(𝐸) using Eq. 8.1, with fit parameters 𝛥𝑉 =

8.94 V and 𝛼 = 243 mJ-1. The saturation offset 𝛿𝑉𝑚𝐶𝑁𝑃 exhibits a large asymmetry in 

graphene devices. In gr/hBN devices, 𝛿𝑉𝑚𝐶𝑁𝑃 is less than 15% of 𝑉𝑑 regardless of 

the polarity of Δ𝑉. However, in graphene devices, when Δ𝑉 > 0, 𝛿𝑉𝑚𝐶𝑁𝑃 can be as 

large as ~50% of 𝑉𝑑  (Figure 8.4b), indicating that not enough ionized defects or 

dopants are being created to neutralize the effect of the applied gate. Although we 

observe 𝛼 to be independent of Δ𝑉 for a given polarity, we do find that 𝛼 depends on 

several factors, including the device material (graphene vs. gr/hBN), the polarity of 

Δ𝑉, the optical power, the wavelength of light, and the doping laser position(172, 

173).  

 

The photodoping rate is larger for gr/hBN devices and when Δ𝑉 > 0. We measure 𝛼 

with optical power ranging from 20 − 2540 𝜇𝑊 (see Supplementary Figure D.3 for 

full power range) with a blue doping laser (445 nm) and 𝑉𝑑 = ±8 V. The results for 

two graphene/hBN and three graphene-only devices (Figure 8.4b-c) show several 

features. First, the photodoping rate depends on whether 𝛥𝑉 < 0 (𝛼− branch) or 

Δ𝑉 > 0 (𝛼+ branch) (Figure 4b). For all devices, 𝛼+ > 𝛼−, but the difference can vary 

greatly. For the gr/hBN devices, 𝛼+~2𝛼−, which is in contrast to a previous study 

using exfoliated hBN(169), where 𝛼−~102 × 𝛼+. For the graphene-only devices, 

𝛼+~103 × 𝛼− (Figure 8.4c). In either case, the high rate of the 𝛼+ branch could be due 

to an increased defect density or to a lower ionization energy for the acceptor-type 
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defects in CVD hBN(177), surface contaminants, or the SiO2(170). Next, 𝛼 for gr/hBN 

devices is greater than for graphene-only devices, regardless of branch, although the 

difference is significantly larger for the 𝛼− branch, which can differ by a factor of 

102 − 103 (Figure 8.4c). These differences in the rates and the value of 𝛿𝑉𝑚𝐶𝑁𝑃 

between the gr/hBN and graphene-only devices suggests that the gr/hBN 

heterostructure has a relatively higher density of ionizable dopants and/or a lower 

dopant ionization energy, consistent with previous reports of electronic 

photodoping(169–173). 

 

We find that the phototuning rate is not purely determined by the accumulated 

energy but also by the optical power. Figure 8.4d illustrates the behavior of 𝛼(𝑃) for 

the 𝛼+ branch of a gr/hBN device with laser power increasing from 20 –  640 𝜇𝑊. 

Both 𝛼 branches increase with the optical power consistent with a power function 

𝛼(𝑃) = 𝛼0𝑃𝛾. Fitting the data Figure 8.4d (solid black curve), we find 𝛾 = 0.63. In 

general, 𝛾 is between 0.4 − 0.6 for gr/hBN devices and 0.2 − 0.7 for the graphene 

devices (see Supplementary Figure D.3). The non-zero value of 𝛾 is potentially due to 

local laser-induced heating of the suspended 2D sheets(79), which would lower the 

energy barrier between the donors (acceptors) and the conduction (valence) bands, 

increasing 𝛼. Even faster phototuning should be possible with higher laser power 

since both graphene and hBN are stable at high temperatures(63). 

 

The phototuning rate is greater for shorter wavelength light. To characterize the 

wavelength dependence of 𝛼, we measure 𝛼 in a gr/hBN device using four different 

laser wavelengths (633, 532, 445, 405 nm) with an optical power of 20 μW and |𝑉𝑑| =

8 V. The results (Figure 8.4e) show that shorter wavelength, higher energy 

illumination leads to much faster phototuning. Compared to 633 nm light (𝛼+ =

9.2 × 10−3 mJ-1 and 𝛼− = 1.5 × 10−2 mJ-1), 𝛼 for 405 nm light (𝛼+ =  70 mJ-1 and 𝛼− =

36 mJ-1) is larger by a factor of ~104. The rate increase also appears to be saturating 

near 3 eV. The enhanced phototuning at shorter wavelengths agrees with previous 

photodoping studies in hBN as well as SiO2(169–171). The wavelength dependence 

of 𝛼 is advantageous for nanomechanics experiments, as it allows selection of a long-
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wavelength laser for transduction, which has a negligible phototuning effect, and a 

short-wavelength laser for phototuning. We note that higher photon energies likely 

also induce photodoping, which could explain the frequency shifts seen in γ-ray 

irradiated 2D sheets(178). 

 

The temporal rate of phototuning, 
𝑑𝑓𝑉

𝑑𝑡
, depends on the value of 𝑉𝑚𝐶𝑁𝑃, and can exceed 

1.75 GHz/s when 𝑉𝑚𝐶𝑁𝑃~35 V .(see s Using Eq. 1 and electrostatic frequency tuning 

curves 𝑓(𝑉𝑔) (e.g. curves extracted from the maximum amplitude of spectra in Figure 

8.4a), we find an expression for the temporal rate, 
d𝑓𝑉

𝑑𝑡
= 𝛼𝑃Δ𝑉 (

𝑑𝑓

𝑑𝑉𝑔
)

𝑉𝑔=0

, where 
𝑑𝑓

𝑑𝑉𝑔
 is 

the slope of the photodoped gate voltage tuning curve at 𝑉𝑔 = 0 V (i.e. at 𝑓𝑉). See 

supplementary information for the derivation of 
𝑑𝑓𝑉

𝑑𝑡
. The 

𝑑𝑓

𝑑𝑉𝑔
 is determined by the 

device geometry(61, 81) and strain, and could be increased by using small area 

devices or shallower cavities. For our devices, the maximum values of 
𝑑𝑓

𝑑𝑉𝑔
 are typically 

between 0.8 − 1.4 MHz/V, and these max values are achieved in the range 𝑉𝑚𝐶𝑁𝑃 =

5 − 15 V (see Supplementary Figure D.2). For a typical gr/hBN device, we observe 

𝛼𝑃~50 s-1 with 500 μW of incident optical power, (see Figure 8.4b-d and 

Supplementary Figure D.3). Thus, with 
𝑑𝑓

𝑑𝑉𝑔
~1 MHz/V and Δ𝑉 = 1 V, we obtain a 

tuning rate of 
d𝑓𝑉

𝑑𝑡
= 50 MHz/s. We note that 

d𝑓𝑉

𝑑𝑡
 characterizes the change in the 

steady-state 𝑓𝑉  for a particular dose, not the dynamic change in 𝑓𝑉 , which is limited 

by the RC time constant of the device (~1 μs).  Still, the frequency tuning rate of 

phototuning is exceptionally fast; for example, with a moderate bias voltage of ΔV~10 

V and optical power less than 1 mW, it is possible to tune a resonator by its full 

linewidth (Δ𝑓𝐿~100 kHz) in a time Δ𝑓𝐿 (
d𝑓𝑉

𝑑𝑡
)

−1

~100 μs, or equivalently, to tune 104 

resonators in one second.  
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Many applications in NEMS circuits and lattices require precise, programmable 

frequency and strain tuning of individual resonators within large arrays on a single 

chip(150, 174). To demonstrate this capability with phototuning, we first show that 

the effect is localized to the laser spot Figure 8.5a shows the doping rate at 20 μW 

measured at different locations on the membrane. The device begins to photodope 

only when the gaussian spot of the laser overlaps with the area of the membrane. We 

use the dilation of the spatial doping rate profile relative to the device diameter 

(grayed region in Figure 8.5a) to infer a spatial resolution of ~1 μm, which is 

approximately the size of the laser spot. Next, we align the frequencies of five different 

gr/hBN devices, which are all on a single chip. Even without tuning with feedback, we 

tune the resonators to within 30 kHz of 𝑓𝑉 = 15 MHz (Figure 8.5b), which aligns the 

frequencies within ~5% of a resonance linewidth and achieves a tuning precision of 

99.8%. The electrostatic frequency tuning curves (extracted from amplitude maxima 

of the fundamental mode) for each device are shown in Figure 8.5c. While the curves 

intersect at 𝑉𝑔 = 0 V, which defines 𝑓𝑉 , the values of 𝑉𝑚𝐶𝑁𝑃, the minimum frequency 

 

Figure 8.5: Aligning the resonance frequencies of neighboring gr/hBN NEMS. (a) Photodoping rate as 

the doping laser is scanned across a gr/hBN drumhead. The scan line is indicated in the SEM image 

inset. The doping rate reaches a maximum at the center of the drum and rapidly falls off as it is swept 

away. The gray band indicates the spatial extent of the device. Scale = 1 μm. (b) Resonant response for 

five different gr/hBN devices displaying alignment of 𝑓𝑉 to 15 MHz of less than 99.8%. The alignment 

is achieved with no external electrical gate bias. (c) Electrostatic frequency tuning curves for the 

fundamental mode of the five devices from b (the data color corresponds to each device) after being 

simultaneously phototuned to 𝑓𝑉 = 15 MHz. The gray horizontal band corresponds to the 14 − 16 MHz 

plot range of b. 
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(i.e. at 𝑉𝑚𝑁𝐶𝑃), and the general curve shape vary considerably. Based off SEM images 

(see Supplementary Figure D.4), each device also differs markedly in terms of 

geometry (e.g. number of trenches), surface contamination, and macroscopic defects 

(e.g. tears, grain boundaries, wrinkles, holes). This demonstrates that phototuning is 

largely insensitive to variations between individual resonators and is thus a robust 

frequency tuning method. 

8.3 Discussion 

The phototuning effect we demonstrate in graphene and gr/hBN NEMS could be 

applicable to other types of NEMS. Persistent photodoping has been observed in a 

variety of graphene heterostructures(170, 171, 179) as well as other materials 

including SrTiO3(180). In these systems, the mechanical element does not need to be 

an atomically thin membrane, like graphene or a graphene heterostructure. For 

example, it might be possible to phototune graphene-coated silicon nitride 

nanobeams(37), which would offer the benefit of an ultra-high quality factor (𝑄 >

106.) However, atomically thin resonators have the great advantage of an extreme 

tuning range. 

 

Phototuning offers intriguing possibilities for both applied and fundamental physics 

in isolated NEMS and NEMS arrays, where tight control over individual resonators is 

essential. Our technique can pattern arbitrary complex geometries of static charge 

across a single, large-area resonator, which could improve the actuation efficiency of 

antisymmetric modes or allow tunable intermodal coupling(61), both commonly 

achieved via intricately patterned back-gates. Furthermore, this tuning also offers 

new opportunities for programmable NEMS crystals. In our vision for these crystals, 

individual resonators would be coupled to neighboring resonators by a suspended 

bridge material. By phototuning the resonators and the bridges, precisely tuned 

complex acoustic crystals would be possible. Unlike previous demonstrations of static 

phononic crystals(92, 160) and tunable phononic crystals(150), our approach is not 

vulnerable to fabrication imperfections and possesses a higher degree of tunability 

and the ability to modify individual unit cells of the crystal.  
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8.4 Conclusion 

In conclusion, we have demonstrated a fast, reversible, persistent, and scalable 

frequency tuning method based on deterministic charge trapping, which allows for 

electro-optic “etch-a-sketch” patterning of strain in 2D NEMS arrays. Our phototuning 

technique eliminates the need for complex, lithographically defined gate electrodes 

used to electrostatically strain and frequency tune NEMS resonators. When applied 

to large NEMS lattices, this approach could enable reprogrammable phononic crystals 

and waveguides(160, 174), or more exotic applications such as nanomechanical logic, 

neuromorphic computing(161, 162), or the simulation of complex networks(25). 
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CHAPTER IX 

CONCLUSIONS AND FUTURE WORK 

9.1 Future work 

This work lays the groundwork for future studies with arrays of graphene NEMS. Due 

to their high quality factors and anomalously high thermal resistance(47, 153), the 

graphene trampolines shown in Chapter V have great promise for high-resolution 

sensing. These experiments are underway and our lab recently demonstrated 

graphene trampolines for fast and sensitive room-temperature nanomechanical 

bolometry(46). Scaling such devices up could allow for new, ultrafast thermal 

imaging cameras. However, much additional work remains to be completed. For 

example, integrating electronic readout(81) into the FIB-shaped geometries would 

increase their efficacy as sensors. It would also be interesting to explore the use of 

graphene trampolines as multi-modal sensors. For example, a graphene trampoline 

could simultaneously measure adsorbates the energy of a particle and its mass. 

 

The phototuning method we demonstrate in Chapter VIII has the potential to 

revolutionize the field of array-based NEMS. Although many frequency tuning 

methods exist, none simultaneously allows for a large array of devices to be rapidly 

and repeatably programmed. This would not only solve long-standing problems 

combatting fabrication imperfections, first identified in the resonant-gate transistor, 

but would allow for a suite of potentially disruptive applications in nanomechanical 

computation. For example, NEMS arrays have been suggested for neuromorphic 

computing(164), however this requires fine control of the initial state of each 

resonator. By phototuning each resonator to the desired initial state and tuning the 

coupling between individual resonators, it should be possible to realize a 

nanomechanical neuromorphic computer. 

  

Finally, further exploration of high-𝑄 graphene NEMS is also a promising research 

direction and could lead to the use of graphene NEMS in quantum optomechanics. Our 
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work in Chapter VI shows that that the 𝑄 in graphene NEMS is governed by 

dissipation dilution but is limited by large out-of-plane wrinkles. By reducing or 

removing wrinkles through pre-stress(128, 181, 182) or FIB irradiation, it should be 

able to achieve much higher quality factors in graphene NEMS. Furthermore, by 

applying the same engineering strategies used in SiN(34) it might be possible to 

achieve truly massive quality factors in graphene. For a membrane where the edge-

bending is reduced via a phononic crystal, 𝑄~𝑄0 ×
𝑇𝑎2

𝜅
 . Given the experimentally 

measured tensile breaking strength of ~20 N/m in CVD graphene(139), the 

theoretical bending stiffness without wrinkles (~10 eV), our experimentally 

measured 𝑄0, and a moderate device radius of 10 μm, 𝑄 > 1010 could be achievable, 

surpassing the highest values attained in SiN. Even relaxing some of these values, 

𝑓0 × 𝑄 > 1012 should be readily achievable in graphene NEMS, allowing for quantum 

optomechanics at room temperature(35). Such devices would also have exceptional 

sensitivity to masses and forces due to the combination of high 𝑄 and low mass, 

making them attractive for mass sensing(5, 27, 143) and MRFM(18, 30). To this end, 

we have begun fabrication of large-area graphene NEMS on nanopillars(183), which 

we plan to cut out using FIB to generate a phononic crystal.  

9.2 Concluding Thoughts 

In conclusion, this body of work represents a significant advancement in our ability 

to build viable arrays of NEMS. In Chapter IV and Chapter V, we showed that FIB 

milling is an effective way to modify the geometry, tune the mode shape, and enhance 

the mechanical properties of graphene NEMS. In Chapter VI, we demonstrated that 

dissipation dilution is an effective theory to describe the 𝑄 in graphene NEMS and 

that the 𝑄 can be greatly enhanced using similar strain and shape engineering 

techniques to those used in SiN. In Chapter VII, we presented a study of optical 

actuation methods, allowing for fine control of the actuation efficiency of various 

mechanical modes. Finally, in Chapter VIII, we showed that photoinduced doping of 

graphene NEMS is a means to persistently and reversibly tune their resonance 

frequencies, potentially enabling large-scale NEMS arrays and circuits. Together, 
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these studies demonstrate that graphene has great potential for applications for both 

single NEMS as well as large NEMS arrays. 
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APPENDIX  A 

SUPPLEMENTARY INFORMATION FOR CHAPTER IV 

From Miller, D. & Alemán, B. Shape tailoring to enhance and tune the properties of 

graphene nanomechanical resonators. 2D Mater. 4, (2017) 

 
 

 

 
 

 

Supplementary Figure A.1: Transmission Electron Microscopy (TEM) images of Focused Ion Beam 

(FIB) cut devices taken with an FEI Titan operating at 80kV. (a) TEM image of a graphene cross. The 

black dots are contaminants remaining from the transfer process. (b) Higher magnification image of 

the same graphene cross. Polymer contamination leftover from the transfer process is visible as the 

darker contrast regions. (c) Rough edge after FIB milling similar to the one shown in the main text.  
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Supplementary Figure A.2: Raman spectroscopy of FIB milled graphene. (a) The Raman spectrum of 

the graphene prior to milling has an I2D/IG ratio of ~1 and a sharp 2D peak with a FWHM of ~32 cm-1. 

The I2D/IG is low compared to as-grown CVD monolayer graphene but is typical of annealed, single-

layer graphene (86), as described by the supplier of the graphene. We also fit a broad peak underneath 

the G peak, which is indicative of carbonization of hydrocarbon residue during annealing. (b) The 

nanomechanical drumheads that have been briefly exposed to the ion beam show signs of damage and 

modified lattice strain, evidenced by an increased D peak intensity and a lower 2D peak intensity (48, 

81). The FWHM of both the G and D peaks increases as well. (c) The milled devices show a continuation 

of the trends seen in the FIB exposed drumheads, indicating a higher defect density. Additionally, the 

edges of the cut devices are expected to contribute to the enhanced D-peak (81, 121). All Raman 

spectra were obtained with a WITEC alpha300 Raman microscope with a 532 nm excitation laser. The 

laser power was kept low to avoid damaging or heating graphene. 
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Supplementary Figure A.3: Selected Area Electron Diffraction (SAED) of the graphene devices before 

and after FIB irradiation. (a) SAED of a pristine graphene drumhead imaged far away from the milled 

region. The single set of diffraction spots confirms that the graphene is single grain.  Some slight 

rotation of diffraction spots is observed and is likely due differential strain and fold defects in the 

graphene. (b) SAED image of a graphene drumhead which has been irradiated with a FIB ‘snapshot’, 

equivalent to a dose of ~ .0007 pC/μm2. (c) SAED of a graphene cross. Despite the FIB irradiation, the 

graphene possesses a diffraction pattern corresponding to single-crystal graphene.  
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Supplementary Figure A.4: Additional SEM images of selected devices (a) “Trampoline” devices 

consisting of 48 individual tethers ~40 nm in width. (b) Due to the low bending rigidity of graphene, 

all cantilevers bend upwards to some degree but the effect is exaggerated after optical characterization 

at high power (c) Mesh cut into graphene with pitch ~100 nm.  (d) Doubly-clamped suspended ‘H’ 

structure. The tethers are similar to the scrolled graphene shown in the main text. (e) Finished coupled 

beam geometry with ~500 nm beams mechanically coupled through a ~50 nm tether. (f) Trampoline 

style device with tethers of scrolled graphene. (g) Tethered cantilever style resonator fabricated over 

a cavity using CVD graphene transferred using the techniques described in (169–173). (h) Trampoline 

resonator fabricated over a cavity. 



 115 

 

 

Supplementary Figure A.5: Detailed diagram of the interferometric measurement of graphene 

mechanical motion. An incident 532 nm single longitudinal mode laser is divided by a 50:50 

beamsplitter into a signal and reference arm. Reflected light from the graphene devices and a reference 

mirror is interfered on two fast photodiodes using a 10:90 beamsplitter. The reflected signal is fed 

through a low-pass filter with a characteristic time constant much longer than the period of the 

mechanical resonance frequencies of the graphene devices. This filtered signal is used as the input for 

a PID loop. The output of the PID loop drives a piezoelectric crystal, which adjusts the length of the 

reference arm to compensate for low-frequency path length changes in the interferometer. The 

transmitted signal is measured using a lock-in amplifier to recover amplitude and phase information. 

A 445 nm diode laser is amplitude modulated via an acousto-optic modulator and coupled into the 

optical path through a dichroic mirror in order to photothermally actuate the mechanical motion. Prior 

to detection, the 445 nm light is filtered out by a long-pass filter. 
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A.1: Calculation of strain for a mechanical drumhead  

We follow the calculation given in (171) to calculate the minimum strain in the graphene 

drumheads. The fundamental resonance frequency for a tensioned membrane is given by 

f0=
4.808

2πD
√

Ytϵ

ρα
, where D is the drumhead diameter (2.5 μm), t is the thickness (.335 nm), Yt is 

the in-plane Young’s modulus (340 N/m), ρ is the two-dimensional mass density 

(7.4×10-16g/μm2), α is scaling factor to account for additional contaminant mass from the 

transfer process, and ϵ is the strain in the membrane. Since 𝜶 is unknown, typically of order 1, 

we set a minimum, rather than absolute, value on the strain. Using the measured resonance 

frequency of 21.54 MHz for the drumheads, we calculate a minimum strain of 𝝐 ~10-5, which 

is in accord with previous measurements of graphene drumheads on holey silicon-nitride(75).   

 

 

 

Supplementary Figure A.6: Thermomechanical noise (black) for a triangular cantilever fitted to 

damped harmonic oscillator fit (red). The time constant on the lock-in amplifier was set to 10 ms.  
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Supplementary Figure A.7:  Finite element simulations of normalized displacement and strain for 

tethered cantilever. Regions of high strain are visible both in the base of the cantilever and at the ends 

of the three tethers. 

 

Supplementary Figure A.8:  Frequency shift as a function of optical drive power. The frequency is seen 

to increase with increasing optical drive power. We attribute this to a combination of thermal 

expansion of the silicon-nitride and thermal contraction of the graphene at increased 

temperatures(170). The amplitude response remains linear over the entire range of optical drive 

power. A linear fit (black line) shows a frequency shift of 14 kHz/μW over a range of about 4 MHz. 
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APPENDIX  B 

SUPPLEMENTARY INFORMATION FOR CHAPTER VI 

 

B.1 Derivation of dilution factor for a circular membrane 

The dilution factor given by 𝐷𝑄 = 1 +
𝑘𝑚

𝑘𝑝
 can be analytically solved for in the limit of 

𝜆 ≫ 1. Applying Eq. 2.20 (∇2𝜙𝑎 = −𝜂𝑚𝑛
2 𝜙𝑎  and ∇2𝜙𝑒 = 𝜉𝑚𝑛

2 𝜙𝑒) to the expressions 

for effective plate and membrane spring constants (Eq. 2.5 and Eq. 2.6), we find, 

𝑘𝑝,𝑒𝑓𝑓 =
κ

𝑎2
∫ 𝑑𝜃 ∫ 𝑠𝑑𝑠(𝜂𝑚𝑛

4 𝜙𝑎
2 + 2𝜂𝑚𝑛

2 𝜉2𝜙𝑎𝜙𝑒 + 𝜉𝑚𝑛
4 𝜙𝑒

2)
1

0

2𝜋

0

 

 

Supplementary Figure B.1: Elastic properties from 3-parameter fit and approximate value of the 

mass density. (a-c) Mass density, tension, and 2D modulus vs. diameter obtained directly by fitting 

the gate-frequency response curves. Outliers for the smaller diameter devices are likely the result of 

mis-fitting, rather than the true mechanical properties. The average mass density in (b) for the 11.6 

μm diameter devices is 𝜌𝑎𝑣𝑔 = 9.64𝜌𝑔 ±  .91𝜌𝑔. (d) Resonance frequency vs. device diameter. (e) 

Approximate tension vs. device diameter using 𝑓0 and 𝜌𝑎𝑣𝑔. This value of the tension is used 

throughout the main text rather than those shown in (b). (f) 𝑄 vs. device diameter. 
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𝑘𝑚,𝑒𝑓𝑓 = 𝑇 ∫ 𝑑𝜃 ∫ 𝑠𝑑𝑠(𝜂𝑚𝑛
2 𝜙𝑎

2 + 2𝜂𝑚𝑛𝜉𝑚𝑛𝜙𝑎𝜙𝑒 − 𝜉𝑚𝑛
2 𝜙𝑒

2)
1

0

2𝜋

0

 

The solutions to the radial part of these integrals are, 

∫ 𝑠𝑑𝑠𝜙𝑎
2

1

0

=
1

2
(𝐽𝑚

2 [𝜂𝑚𝑛] −
2

𝜂𝑚𝑛
𝑚𝐽𝑚−1[𝜂𝑚𝑛]𝐽𝑚[𝜂𝑚𝑛] + 𝐽𝑚−1

2 [𝜂𝑚𝑛]) 

∫ 𝑠𝑑𝑠𝜙𝑒
2

1

0

=
𝐽𝑚

2 [𝜂𝑚𝑛]

2𝐼𝑚
2 [𝜉𝑚𝑛]

(𝐼𝑚
2 [𝜉𝑚𝑛] +

2

𝜂𝑚𝑛
𝑚𝐼𝑚−1[𝜉𝑚𝑛]𝐼𝑚[𝜉𝑚𝑛] − 𝐼𝑚−1

2 [𝜉𝑚𝑛]) 

∫ 𝑠𝑑𝑠𝜙𝑎𝜙𝑒

1

0

=
𝐽𝑚[𝜂𝑚𝑛]

𝐼𝑚[𝜉𝑚𝑛]

1

𝜉𝑚𝑛
2 + 𝜂𝑚𝑛

2
 (𝜉𝑚𝑛𝐽𝑚[𝜂𝑚𝑛]𝐼𝑚+1[𝜉𝑚𝑛] + 𝜂𝑚𝑛𝐽𝑚+1[𝜂𝑚𝑛]𝐼𝑚[𝜉𝑚𝑛]) 

These expressions can be simplified using several approximations. First, using Eq. 

2.29, ∫ 𝑠𝑑𝑠𝜙𝑎𝜙𝑒
1

0
= 0. Next, we look in the membrane limit where 𝜆 ≪ 1. This allows 

us to write 𝜉𝑚𝑛 = 1/𝜆, 𝜂𝑚𝑛 = 𝛼𝑚𝑛, 
𝐼𝑚+1[𝜉𝑚𝑛]

𝐼𝑚[𝜉𝑚𝑛]
≈1, 𝛼𝑚𝑛𝜆𝐽𝑚+1[𝛼𝑚𝑛] = −𝐽𝑚[𝛼𝑚𝑛], and 

𝐽𝑚[𝛼𝑚𝑛] ≈ 0.  

This means, 

∫ 𝑠𝑑𝑠𝜙𝑎
2

1

0

≈
1

2
𝐽𝑚−1

2 [𝛼𝑚𝑛] 

Finally, using the asymptotic approximation of 𝐼𝑚[𝛽] ≈
𝑒1/𝜆

√2𝜋1/𝜆
(1 − 𝜆

4𝑚2−1

8 
) and 

keeping only the leading order of 𝜆, we find,  

∫ 𝑠𝑑𝑠𝜙𝑒
2

1

0

=
1

2
𝛼𝑚𝑛

2 𝜆3𝐽𝑚+1
2 [𝛼𝑚𝑛] 

Thus, 

𝑘𝑚

𝑘𝑝
=

1

𝜆2

𝛼𝑚𝑛
2 𝐽𝑚−1

2 [𝛼𝑚𝑛] − 𝛼𝑚𝑛
2 𝜆𝐽𝑚+1

2 [𝛼𝑚𝑛]

𝛼𝑚𝑛
4 𝐽𝑚−1

2 [𝛼𝑚𝑛] +
𝛼𝑚𝑛

2

𝜆
𝐽𝑚+1

2 [𝛼𝑚𝑛]
 

Using the identity,  

𝑛𝐽𝑛(𝛼𝑚𝑛) =
1

2
𝛼𝑚𝑛(𝐽𝑚−1(𝛼𝑚𝑛) + 𝐽𝑚+1(𝛼𝑚𝑛)) ≈ 0 

We find, 

𝐷𝑄 = 1 +
𝑘𝑚

𝑘𝑝
=

1

𝜆

1 − 𝜆

(𝛼𝑚𝑛
2 𝜆 + 1)

=
1 + 𝛼𝑚𝑛

2 𝜆2

𝜆2𝛼𝑚𝑛
2 + 𝜆

 

For very small 𝜆,  
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𝐷𝑄 =
1

𝜆(1 + 𝛼𝑚𝑛
2 𝜆)
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APPENDIX  C 

SUPPLEMENTARY INFORMATION FOR CHAPTER VII 

From Miller, D. & Alemán, B. Spatially resolved optical excitation of mechanical 

modes in graphene NEMS. Appl. Phys. Lett. 115, 193102 (2019). 
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Supplementary Figure C.1: Measurement of laser FWHM at sample plane. The probe and drive laser 

were modulated at 1 kHz and 100 kHz respectively and reflected off of the substrate before being sent 

directly into the photodiode. The voltage signal was demodulated by a lock-in amplifier to give the 

reflected laser amplitude. By scanning both lasers across the 300 nm wide knife-edge venting trenches 

in the substrate, the Gaussian FWHM can be estimated. (a) Amplitude of the reflected drive laser as it 

is scanned across a trench. Increased scattering when the laser is on the trench leads to a reduced 

amplitude measured at the photodiode. Imperfect coupling of the 445 nm light into the photodiode 

leads to the elliptical shape in the image. (Scale = 1 μm). (b) Gaussian fit to the line cut indicated by the 

white-dashed line in a. The fit gives a FWHM of 0.97 μm. (c) FWHM as a function of laser defocus. As 

the laser is defocused, the FWHM measured through this knife-edge method increases. All 

measurements in the main text took place within a focus range of −2 μm to 2 μm. (d) Gaussian fit to 

the line-cut while scanning the probe laser over a trench. The FWHM in this case is 1.13 μm.  



 123 

 
 

 

 

 

Supplementary Figure C.2 Spatial dependence of the phase. (a) Probe and force maps for the 

fundamental mode of a 3 μm diameter drumhead. A spatially varying phase similar to those shown in 

the main text is visible in the force maps. (b) Phase-response spectra from two points on the drumhead, 

indicated by the orange star and green diamond in the force map. The off-resonance drive frequency 

is shown by the black vertical dashed line. The deviation in phase between the two spots is measured 

at 31.4°, in accord with what is seen on the force map. We find that although 𝜈01 varies by 231.9 kHz 

between the two spots, presumably due to thermal tensioning, it cannot explain the observed phase 

variation seen in the force map. This furthers our claim that the reported phase variations in the main 

text are due to a spatially varying phase response, rather than an artifact due to the resonance 

frequency shifting. 
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Supplementary Figure C.3: Cross-sections of the phase for (a) 𝑈01 (b) and 𝑈11
𝐻 .  
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Supplementary Figure C.4: Mode and force maps for the 𝑈11

𝑉 mode. 𝜈𝑑 = 31.50 MHz. (scale = 1 micron). 
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Supplementary Figure C.5: Dependence of 𝑊01, 𝑊11, and 𝛿01 as function of 𝜎 and 𝛼. Combing the results 

from 𝑈01 and 𝑈11, we generally find that our experimental data is consistent with values of 𝜎 and 𝛼 

between .55 μm and .75 μm, indicated by the dashed box. (a) Cross-section in the x-axis with 𝑦𝑑 = 0 of 

the overlap integrals we numerically evaluate in this work, with a mode diameter of 2 μm, 𝜎 = .55 μm, 

𝛼 = .75 μm, and 𝑥𝑑 = .7 μm. (b.) Heatmap showing the experimentally measured 𝑊01 subtracted from 

the numerically evaluated 𝑊01, at various values of 𝜎 and 𝛼. (c.) Heatmap showing the experimentally 

measured 𝑊11 subtracted from the numerically evaluated 𝑊11, at various values of 𝜎 and 𝛼. (d.) 

Heatmap showing the experimentally measured 𝛿01 subtracted from the numerically evaluated 𝛿01, at 

various values of 𝜎 and 𝛼.  
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Supplementary Figure C.6: Mode and force maps for the 𝑈01 mode of a 5 μm diameter device. Although 

the mode map is symmetric and consistent with theoretical predictions, the force map is more complex 

unlike those shown in the main text. We see significant variation in the phase and amplitude response 

of the device in the force map and observe a “dead-zone”, where the drive force disappears and a 180° 

phase change occurs, much like crossing a nodal line.  (Scale = 1 micron). 
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APPENDIX  D 

SUPPLEMENTARY INFORMATION FOR CHAPTER VIII 

From Miller, D. Blaikie, A., and Alemán, B., Non-volatile rewritable frequency tuning 

of a nanoelectromechanical resonator using photoinduced doping, Nano Lett. 

20, 2378-2386, (2020). 

D.1 Methods 

Fabrication of 2D drumheads: 

gr/hBN mechanical drumhead resonators were fabricated by transferring the 2D 

sheets over an array of cavities etched into 1 μm wet thermal oxide(20) grown on 

degenerately doped silicon wafers (University Wafer). The cavities were fabricated 

using direct-write optical lithography and CHF3 based reactive ion etching. A ~300 

nm layer of oxide was left at the bottom of the cavity to act as a charge trapping layer 

and to prevent shorting. Ti/Pt electrodes were defined by lithography and deposited 

by electron-beam evaporation.   

 

To prepare the 2D sheets for transfer, a relatively thick layer (~3 μm) of PMMA A11 

was spun onto CVD grown single-layer hBN on Cu foil (Graphene Supermarket) and 

then a polyamide scaffold with a central hole removed was then placed on the 

PMMA/hBN/Cu stack. The stack was placed in a bath of Ammonium Persulphate to 

etch the Cu and then rinsed in deionized water and dried in air. The 

polyamide/PMMA/hBN was placed on top of CVD graphene grown on Cu foil 

(Graphenea) and baked at 180 °C for 30 minutes to adhere the hBN and the 

graphene(61, 79). The etching, rinsing, and drying was repeated leaving a 

freestanding film of PMMA/hBN/Graphene supported by the polyamide scaffold. To 

transfer the 2D sheets to the cavity substrates, the PMMA/hBN/Graphene stack was 

then placed graphene-side-down on top of the pre-patterned cavities and adhered at 

155 °C overnight (~15 hours). After removing the polyamide scaffold, the PMMA was 

removed in flowing Ar/H2 at 400 °C. The graphene sheet contacts the electrodes from 

above, resulting in a simultaneous electrical connection to all devices. Graphene-only 
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devices were fabricated in a similar fashion with both an in-house and a commercial 

transfer process performed by Graphenea.   

Measurement of mechanical motion: 

 Device motion was measured using optical interferometry, as described 

previously(71). A 633 nm HeNe laser was focused onto the devices (held at room 

temperature at 10−6 torr) using a 40 ×, 0.6 NA objective. The reflected light was 

detected using a high-sensitivity photodiode and the voltage signal was demodulated 

using a Zurich Instruments HFLI2 Lock-In amplifier. The incident laser was scanned 

with a two-axis galvometer and passed through an optical relay system in order to 

image the mode shape and to maximize transduction sensitivity. We used a low laser 

power (~1 – 10 μW) to avoid unwanted photodoping by the 633 nm probe laser.  

Photodoping:  

A separate laser (405 nm, 445 nm, or 532 nm) was used for photodoping. The doping 

laser was coupled into the beam-path using a dichroic mirror and focused onto the 

sample using the same 40 ×, 0.6 NA objective lens. A separate two-axis galvometer 

was used to position the doping laser at the center of the drumheads. The laser power 

for each color was calibrated using a power meter and maintained using PID control. 

For dynamic measurements of 𝑉𝑚𝐶𝑁𝑃, an acousto-optic modulator was used to supply 

a well-defined pulse of the doping laser with pulse-widths down to ~10 ns. Prior to 

all measurements, the doping laser was scanned across the device with 𝑉𝑑 = 0 V to 

guarantee a uniformly doped initial erased state. 

D.2 Measurement of the CNP 

Measurement of the mechanical charge neutrality point (𝑉𝑚𝐶𝑁𝑃) has typically been 

accomplished in previous work by fitting the full frequency tuning curves (such as 

those shown in Figure 2a), but this approach is too slow for a dynamic measurement 

of 𝑉𝑚𝐶𝑁𝑃. To overcome this, we use a mechanical feedback approach, similar to Kelvin 

Force Probe Microscopy(169, 171), to rapidly measure 𝑉𝑚𝐶𝑁𝑃. The electrostatic force 

felt by the membrane is: 

𝐹 ≈
1

2

𝑑𝐶𝑔

𝑑𝑥
(𝑉𝑔 − 𝑉𝑚𝐶𝑁𝑃)

2
+ 𝑉𝐴𝐶

𝑑𝐶𝑔

𝑑𝑥
(𝑉𝑔 − 𝑉𝑚𝐶𝑁𝑃) cos(2𝜋𝑓𝑡 + 𝜃) (D. 1) 
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where the first term leads to frequency tuning and the second to electrostatic driving. 

We use the off-resonant behavior of the second term to measure 𝑉𝑚𝐶𝑁𝑃. For low 

frequencies below both the RC time constant of the electromechanical circuit (~ 1 μs) 

and the mechanical resonance frequency (~0.1 μs), the phase 𝜃 will vanish. In this 

regime, the X-quadrature (𝑋𝑞𝑢𝑎𝑑) amplitude measured by the lock-in amplifier is 

proportional to (𝑉𝑔 − 𝑉𝑚𝐶𝑁𝑃), which vanishes when 𝑉𝑔 = 𝑉𝑚𝐶𝑁𝑃. Thus to measure 

𝑉𝑚𝐶𝑁𝑃, we feedback on 𝑋𝑞𝑢𝑎𝑑 with a set point voltage 𝑋𝑞𝑢𝑎𝑑 = 0 V and use 𝑉𝑔 as the 

output variable. The value of 𝑉𝑔 that makes 𝑋𝑞𝑢𝑎𝑑 vanish is equal to 𝑉𝑚𝐶𝑁𝑃. 

 

For the dynamic measurements such as those shown in Figure 4, our protocol is as 

follows. First, we set the drive frequency to 𝑓 = 100 kHz, which is well below the 

mechanical resonance frequencies of ~10 MHz and turn on the mechanical feedback. 

After a brief stabilization period, 𝑉𝑔 is measured 10 times with the average value taken 

as 𝑉𝑚𝐶𝑁𝑃. 𝑉𝑔 is then fixed at 𝑉𝑑 and a photodoping optical pulse with a predetermined 

width (from as low as a few milliseconds to several seconds) is applied to the device. 

This process is repeated until 𝑉𝑚𝐶𝑁𝑃 approaches 𝑉𝑑 with both the laser power and 

pulse time determining the total length of the measurement, which can take several 

minutes depending on the resolution. 
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Supplementary Figure D.1: Top: Electrostatic frequency tuning spectra of a gr/hBN device immediately 

after phototuning with 𝑉𝑑 = 7.5 𝑉 (indicated by white line) Middle: Electrostatic frequency tuning 

spectra of the same device after being left in the dark for 8 days with no bias applied. Significant 

changes to the tuning spectra are apparent. Bottom: Electrostatic frequency tuning spectra of a gr/hBN 

device after an additional phototuning step with 𝑉𝑑 = 7.5 𝑉. The prisitine tuning spectra is recovered. 

The dark blue lines correspond to missing data due to a software error.  
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D.3 Calculation of the photodoping rate 

 

Here, we calculate the temporal frequency tuning rate 
𝑑𝑓𝑉

𝑑𝑡
 of our phototuning method. 

The tuning rate characterizes how quickly a device can be tuned to a new frequency, 

or equivalently, how many devices can be tuned within a given amount of time. To 

obtain the tuning rate, we first determine the time required to move 𝑉𝑚𝐶𝑁𝑃 by an 

amount Δ𝑉𝑚𝐶𝑁𝑃. Substituting the expression 𝐸 = 𝑃 × t into Eq. 1 of the main text 

gives the time-dependence of the 𝑉𝑚𝐶𝑁𝑃 at fixed power 𝑃: 

𝑉𝑚𝐶𝑁𝑃(𝑡) = Δ𝑉(1 − 𝑒−𝛼𝑃𝑡) + 𝑉0 (D. 2) 

If a device is phototuned for a time Δ𝑡, then the corresponding change in the 𝑉𝑚𝐶𝑁𝑃 

will be 

Δ𝑉𝑚𝐶𝑁𝑃 ≈
𝑑𝑉𝑚𝐶𝑁𝑃

𝑑𝑡
Δ𝑡 = 𝛼𝑃Δ𝑉𝑒−𝛼𝑃𝑡Δ𝑡 (D. 3) 

At the very start of phototuning (i.e. at 𝑡 = 0), the shift in 𝑉𝑚𝐶𝑁𝑃 is Δ𝑉𝑚𝐶𝑁𝑃 = 𝛼𝑃Δ𝑉Δ𝑡. 

Recalling that 𝑉𝑒𝑓𝑓 = 𝑉𝑔 − 𝑉𝑚𝐶𝑁𝑃 and defining 𝑓 ≡ 𝑓0 + Δ𝑓0(𝑉𝑒𝑓𝑓), the Δ𝑉𝑚𝐶𝑁𝑃 will 

shift the entire gate spectrum 𝑓(𝑉𝑔) and, thus, will shift the phototuned frequency 𝑓𝑉  

 

Supplementary Figure D.2: Derivative of the electrostatic frequency tuning curve with respect to the 

gate voltage for 6 gr/hBN devices. For larger gate voltage values of, 
𝑑𝑓

𝑑𝑉𝑔
 is between 0.8 MHz/V and 1.4 

MHz/V. 
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(recall, 𝑓𝑉 ≡ 𝑓(𝑉𝑔 = 0)). An example of 𝑓(𝑉𝑔) is shown Figure 5c of the main text; we 

extract 𝑓(𝑉𝑔) curves from the maximum amplitude of gate spectra of the fundamental 

mode (Figure 2a). The change in the phototuned frequency 𝑓𝑉  due to Δ𝑉𝑚𝐶𝑁𝑃 is then, 

Δ𝑓𝑉 = (
𝑑𝑓(𝑉𝑔)

𝑑𝑉𝑔
)

𝑉𝑔=0

Δ𝑉𝑚𝐶𝑁𝑃 (D. 4) 

or Δ𝑓𝑉 = (
𝑑𝑓(𝑉𝑔)

𝑑𝑉𝑔
)

𝑉𝑔=0

𝛼𝑃Δ𝑉Δ𝑡. We plot experimental data for 
𝑑𝑓(𝑉𝑔)

𝑑𝑉𝑔
 for 𝑉𝑚𝐶𝑁𝑃~0 V in 

Figure S4. For all devices tested in this work, the derivative 
𝑑𝑓(𝑉𝑔)

𝑑𝑉𝑔
 vanishes at the 

mechanical charge neutrality point (i.e.  (
𝑑𝑓(𝑉𝑔)

𝑑𝑉𝑔
)

𝑉𝑔=𝑉𝑚𝐶𝑁𝑃

= 0) and reaches a 

maximum between |𝑉𝑒𝑓𝑓| = |𝑉𝑔 − 𝑉𝑚𝐶𝑁𝑃|~5 − 15 V, which varies between devices 

and is 
𝑑𝑓(𝑉𝑔)

𝑑𝑉𝑔
~0.8 − 1.4 MHz/V, as seen in Figure 5c and Figure S4. This means that 

maximum values of Δ𝑓𝑉 can be achieved when 𝑉𝑚𝐶𝑁𝑃 is initially set such that 
𝑑𝑓(𝑉𝑔)

𝑑𝑉𝑔
 is 

a maximum, for example, when 𝑉𝑚𝐶𝑁𝑃 is set between 5 − 15 𝑉 for the devices in 

Figure S4. 

In the limit of Δ𝑡 → 𝑑𝑡, we obtain an expression for the temporal frequency tuning 

rate, 

d𝑓𝑉

𝑑𝑡
= 𝛼𝑃Δ𝑉 (

𝑑𝑓

𝑑𝑉𝑔
)

𝑉𝑔=0

(D. 5) 

The maximum temporal frequency tuning rate is 

𝑅𝑓 ≡ 𝛼𝑃Δ𝑉 max
𝑑𝑓

𝑑𝑉𝑔

(D. 6) 

As discussed in main text, the tuning rate varies with illumination wavelength, laser 

power, and device type (gr/hBN vs. graphene devices). 

The tuning rate 𝑅𝑓 can reach large values that make it possible to tune thousands of 

devices in less than a second. For a typical gr/hBN device, 𝛼𝑃 ~50 s-1 and max
𝑑𝑓

𝑑𝑉𝑔
~1 

MHz/V. The value of Δ𝑉 can be set arbitrarily high, up to the damage threshold or 
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dielectric breakdown voltage of our devices. In our studies, we set Δ𝑉 as high as ~35 

V, which corresponds to a tuning rate of 𝑅𝑓 = 1.75 GHz/s. 

Using 𝑅𝑓 we can calculate the time required to tune a device. A relevant amount of 

frequency tuning for a device is the resonance linewidth of a membrane, which is of 

order Δ𝑓𝐿~100 kHz. The time required to tune by one linewidth is 

𝜏 =
Δ𝑓𝐿

𝑅𝑓

(D. 7) 

With 𝑅𝑓 = 1 GHz/s, we obtain 𝜏 = 100 μs. This same tuning rate could tune 10,000 

devices by a 100 kHz linewidth in one second. 
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Supplementary Figure D.3: Complete power dependence curves for the α+ and α- branch for two 

gr/hBN devices and three graphene devices with the corresponding exponent for the incident power. 

This exponent is consistently around 0.5.  

 



 136 

 

 

  

 
 
Supplementary Figure D.4: Gallery of gr/hBN devices used in Figure 5(b-c). Various levels of 

imperfections, defects, and clamping are observed across the devices. Scale = 1 μm. 
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